Enhancing the Thermal Conductivity of 1-OD/Indium Composite Phase Change Material for Thermal Energy Storage

Article Preview

Abstract:

In this study, the effects of processing temperatures of indium nanoparticles (In NPs) on the thermal conductivity (κ) of an organic phase change material (PCM) were investigated. 1-octadecanol (1-OD) also known as stearyl alcohol, with chemical formula C18H38O was selected as the organic PCM. Surface of Indium nanoparticles are functionalized with polyvinylpyrrolidone (PVP) to promote particles dispersion in 1-OD medium. Experimental analysis showed that for the In NPs/1-OD composite phase change material (CPCM) with a ~12 vol.% (~55 wt.%) of In NPs loading, specific melting latent heat (Lm) of the mixture is 103.1 J/g (~41.5% Lm,1-OD). This value is proportional to weight % loading of 1-OD (~45 wt.%) in the mixture. The κ versus processing temperature graph showed a turning point between 100 °C and 110 °C reaching a κ = 2.56 ± 0.07 W/mk at this processing temperature range. This is ~ 6.74-fold higher than κ of the 1-OD organic PCM matrix at 0.38 ± 0.01 W/mK. This is due to formation of high aspect ratio (length/diameter) conductive network pathways of In NPs in 1-OD organic PCM.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 367)

Pages:

69-78

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Hołyst and A. Poniewierski, Thermodynamics for chemists, physicists and engineers, 2012th Ed. Springer, New York, NY (2012).

DOI: 10.1007/978-94-007-2999-5

Google Scholar

[2] M. Kenisarin and K. Mahkamov, Solar energy storage using phase change materials, Renew. Sustain. Energy Rev. Vol. 11, No. 9 (2007) p.1913–1965.

DOI: 10.1016/j.rser.2006.05.005

Google Scholar

[3] B. M. Diaconu, M. Cruceru and L. Anghelescu, Phase change materials—applications and systems designs: A Literature Review, Des. Vol. 6, No. 6 (2022), 6060117.

DOI: 10.3390/designs6060117

Google Scholar

[4] Y. Lin, Y. Jia, G. Alva and G. Fang, Review on Thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sustain. Energy Rev. Vol. 82, No. P3 (2018) p.2730–2742.

DOI: 10.1016/j.rser.2017.10.002

Google Scholar

[5] B. Eanest Jebasingh and A. Valan Arasu, A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications, Energy Storage Mater. Vol. 24 (2020) p.52–74.

DOI: 10.1016/j.ensm.2019.07.031

Google Scholar

[6] J. Paul, K. Kadirgama, M. Samykano, A.K. Pandey and V.V. Tyagi, A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials, J. Energy Storage. Vol. 45 (2022) 103415.

DOI: 10.1016/j.est.2021.103415

Google Scholar

[7] A. Mills, M. Farid, J.R. Selman and S. Al-Hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix, Appl. Therm. Eng. Vol. 26, No. 14-15 (2006) p.1652–1661.

DOI: 10.1016/j.applthermaleng.2005.11.022

Google Scholar

[8] T. Zhou, Y. Zhao and Z. Rao, Fundamental and estimation of thermal contact resistance between polymer matrix composites: A Review, Int. J. Heat Mass Transf. Vol. 189 (2022) 122701.

DOI: 10.1016/j.ijheatmasstransfer.2022.122701

Google Scholar

[9] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du and B. Chen, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci. Vol. 59 (2016) p.41–85.

DOI: 10.1016/j.progpolymsci.2016.03.001

Google Scholar

[10] J.L. Zeng, F.-R. Zhu, S.-B. Yu, L. Zhu, Z. Cao, L.-X. Sun, G.-R. Deng, W.-P. Yan and L. Zhang, Effects of copper nanowires on the properties of an organic phase change material, Sol. Energy Mater. Sol. Cells. Vol. 105 (2012) p.174–178.

DOI: 10.1016/j.solmat.2012.06.013

Google Scholar

[11] Y. Deng, J. Li, T. Qian, W. Guan, Y. Li and X. Yin, Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem. Eng. J. Vol. 295 (2016) p.427–435.

DOI: 10.1016/j.cej.2016.03.068

Google Scholar

[12] W. Liang, L. Wang, H. Zhu, Y. Pan, Z. Zhu, H. Sun, C. Ma and A. Li, Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage, Sol. Energ. Mat. Sol C. Vol. 180 (2018) p.158–167.

DOI: 10.1016/j.solmat.2018.03.005

Google Scholar

[13] J. Tang, M. Yang, F. Yu, X. Chen, L. Tan and G. Wang, 1-Octadecanol@Hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage, Appl. Energy. Vol. 187 (2017) p.514–522.

DOI: 10.1016/j.apenergy.2016.11.043

Google Scholar

[14] S. Wang, D. Chen, Q. Hong, Y. Gui, Y. Cao, G. Ren and Z. Liang, Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A Review, J. Mol. Liq. Vol. 389 (2023), 122821.

DOI: 10.1016/j.molliq.2023.122821

Google Scholar

[15] L. Lavagna, R. Nisticò, S. Musso and M. Pavese, Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: A review, Mater. Today Chem. Vol. 20 (2021) 100477.

DOI: 10.1016/j.mtchem.2021.100477

Google Scholar

[16] J.A. Dean, Lange's handbook of chemistry, 15th ed., McGraw-Hill, New York, NY (1999).

Google Scholar

[17] Information on https://www.sigmaaldrich.com/US/en/sds/aldrich/o709

Google Scholar

[18] The Merck Index: An encyclopedia of chemicals, drugs, and biologicals, 11th Ed. Merck Publishing Group, Rahway, NJ (1989).

Google Scholar

[19] F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc and N. Koratkar, Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives, J. Phys. Chem. C. Vol. 115, No. 17 (2011) p.8753–8758.

DOI: 10.1021/jp200838s

Google Scholar

[20] L. Ventolà, M. Ramírez, T. Calvet, X. Solans, M.A. Cuevas-Diarte, P. Negrier, D. Mondieig, J.C. van Miltenburg and H.A.J. Oonk, Polymorphism of N-Alkanols:  1-Heptadecanol, 1-Octadecanol, 1-Nonadecanol, and 1-Eicosanol, Chem. Mater. Vol. 14, No. 2 (2002) p.508–517.

DOI: 10.1021/cm011010h

Google Scholar

[21] J.L. Zeng, Z. Cao, D.W. Yang, L.X. Sun and L. Zhang, Thermal conductivity enhancement of Ag nanowires on an organic phase change material, J. Therm. Anal. Calorim. Vol. 101 (2010) p.385–389.

DOI: 10.1007/s10973-009-0472-y

Google Scholar

[22] P. Zhang, X. Xiao and Z.W. Ma, A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy. Vol. 165, No. 1 (2016) p.472–510.

DOI: 10.1016/j.apenergy.2015.12.043

Google Scholar

[23] D.G. Atinafu, Y.S. Ok, H.W. Kua and S. Kim, Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry, Appl. Therm. Eng. Vol. 181 (2020) 115960.

DOI: 10.1016/j.applthermaleng.2020.115960

Google Scholar

[24] J.L. Zeng, Z. Cao, D.W. Yang, F. Xu, L.X. Sun, X.F. Zhang and L. Zhang, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Therm. Anal. Calorim. Vol. 95 (2009) p.507–512.

DOI: 10.1007/s10973-008-9275-9

Google Scholar

[25] ASTM D5470-17, Standard test method for thermal transmission properties of thermally conductive electrical insulation materials, ASTM Int. (2017), p.1–6.

Google Scholar

[26] ASTM E1530-19, Standard test method for evaluating the resistance to thermal transmission by the guarded heat flow meter technique, ASTM Int. (2019), p.1–8.

DOI: 10.1520/e1530-04

Google Scholar

[27] J. Gu, Thermally conductive polymer composites, 1st Ed., Elsevier, Amsterdam, Netherlands (2023).

Google Scholar

[28] Y. K. Godovsky, Thermophysical properties of polymers, 1st Ed., Springer, New York, NY (1992).

Google Scholar

[29] M. Čáchová, D. Koňáková, E. Vejmelková, M. Keppert and R. Černý, Mechanical and thermal properties of the Czech marbles, AIP Conf. Proc. Vol. 1738, No. 1 (2016) 280010

DOI: 10.1063/1.4952070

Google Scholar

[30] L. Laloui and A.F. Rotta Loria, Analysis and design of energy geostructures - theoretical essentials and practical application, 1st Ed., Academic Press, Cambridge, MA (2019).

Google Scholar

[31] P. Cheng, X. Chen, H. Gao, X. Zhang, Z. Tang, A. Li and G. Wang, Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: fundamentals and applications, Nano Energy. Vol. 85 (2021) 105948.

DOI: 10.1016/j.nanoen.2021.105948

Google Scholar

[32] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd Ed. John Wiley & Sons, Hoboken, NJ (2006).

Google Scholar

[33] J. J. Moore, E. A. Boyce, M. J. Brooks, Chemical metallurgy, 1st Ed. Butterworth-Heinemann, Oxford, United Kingdom (2013).

Google Scholar

[34] K. Ruan, X. Shi, Y. Guo and J. Gu, Interfacial thermal resistance in thermally conductive polymer composites: A review, Compos. Commun. Vol. 22 (2020) 100518.

DOI: 10.1016/j.coco.2020.100518

Google Scholar

[35] K.V. Chandekar, B. Palanivel, F.H. Alkallas, A.B.G. Trabelsi, A. Khan, I.M. Ashraf, S. AlFaify and M. Shkir, Photocatalytic activities of Mg doped NiO NPs for degradation of methylene blue dye for harmful contaminants: a kinetics, mechanism and recyclability, J. Phys. Chem. Solids. Vol. 178 (2023) 111345.

DOI: 10.1016/j.jpcs.2023.111345

Google Scholar

[36] I. Gosens, J.A. Post, L.J. de la Fonteyne, E.H. Jansen, J.W. Geus, F.R. Cassee and W.H. de Jong, impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation, Part. Fibre Toxicol. Vol. 7 (2010) Art. No. 37.

DOI: 10.1186/1743-8977-7-37

Google Scholar

[37] C.P. Martin, M.O. Blunt and P. Moriarty, Nanoparticle networks on silicon:  self-organized or disorganized? Nano Lett. Vol. 4, No. 12 (2004) p.2389–2392.

DOI: 10.1021/nl048536w

Google Scholar

[38] H. Bönnemann, N. Waldöfner, H.-G. Haubold and T. Vad, Preparation and characterization of three-dimensional Pt nanoparticle networks, Chem. Mater. Vol. 14, No. 3 (2002) p.1115–1120.

DOI: 10.1021/cm0111837

Google Scholar

[39] H. Pang, L. Xu, D.-X. Yan and Z.-M. Li, Conductive polymer composites with segregated structures, Prog. Polym. Sci. Vol. 39, No. 11 (2014) p.1908–1933.

DOI: 10.1016/j.progpolymsci.2014.07.007

Google Scholar