[1]
R. Hołyst and A. Poniewierski, Thermodynamics for chemists, physicists and engineers, 2012th Ed. Springer, New York, NY (2012).
DOI: 10.1007/978-94-007-2999-5
Google Scholar
[2]
M. Kenisarin and K. Mahkamov, Solar energy storage using phase change materials, Renew. Sustain. Energy Rev. Vol. 11, No. 9 (2007) p.1913–1965.
DOI: 10.1016/j.rser.2006.05.005
Google Scholar
[3]
B. M. Diaconu, M. Cruceru and L. Anghelescu, Phase change materials—applications and systems designs: A Literature Review, Des. Vol. 6, No. 6 (2022), 6060117.
DOI: 10.3390/designs6060117
Google Scholar
[4]
Y. Lin, Y. Jia, G. Alva and G. Fang, Review on Thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sustain. Energy Rev. Vol. 82, No. P3 (2018) p.2730–2742.
DOI: 10.1016/j.rser.2017.10.002
Google Scholar
[5]
B. Eanest Jebasingh and A. Valan Arasu, A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications, Energy Storage Mater. Vol. 24 (2020) p.52–74.
DOI: 10.1016/j.ensm.2019.07.031
Google Scholar
[6]
J. Paul, K. Kadirgama, M. Samykano, A.K. Pandey and V.V. Tyagi, A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials, J. Energy Storage. Vol. 45 (2022) 103415.
DOI: 10.1016/j.est.2021.103415
Google Scholar
[7]
A. Mills, M. Farid, J.R. Selman and S. Al-Hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix, Appl. Therm. Eng. Vol. 26, No. 14-15 (2006) p.1652–1661.
DOI: 10.1016/j.applthermaleng.2005.11.022
Google Scholar
[8]
T. Zhou, Y. Zhao and Z. Rao, Fundamental and estimation of thermal contact resistance between polymer matrix composites: A Review, Int. J. Heat Mass Transf. Vol. 189 (2022) 122701.
DOI: 10.1016/j.ijheatmasstransfer.2022.122701
Google Scholar
[9]
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du and B. Chen, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci. Vol. 59 (2016) p.41–85.
DOI: 10.1016/j.progpolymsci.2016.03.001
Google Scholar
[10]
J.L. Zeng, F.-R. Zhu, S.-B. Yu, L. Zhu, Z. Cao, L.-X. Sun, G.-R. Deng, W.-P. Yan and L. Zhang, Effects of copper nanowires on the properties of an organic phase change material, Sol. Energy Mater. Sol. Cells. Vol. 105 (2012) p.174–178.
DOI: 10.1016/j.solmat.2012.06.013
Google Scholar
[11]
Y. Deng, J. Li, T. Qian, W. Guan, Y. Li and X. Yin, Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem. Eng. J. Vol. 295 (2016) p.427–435.
DOI: 10.1016/j.cej.2016.03.068
Google Scholar
[12]
W. Liang, L. Wang, H. Zhu, Y. Pan, Z. Zhu, H. Sun, C. Ma and A. Li, Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage, Sol. Energ. Mat. Sol C. Vol. 180 (2018) p.158–167.
DOI: 10.1016/j.solmat.2018.03.005
Google Scholar
[13]
J. Tang, M. Yang, F. Yu, X. Chen, L. Tan and G. Wang, 1-Octadecanol@Hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage, Appl. Energy. Vol. 187 (2017) p.514–522.
DOI: 10.1016/j.apenergy.2016.11.043
Google Scholar
[14]
S. Wang, D. Chen, Q. Hong, Y. Gui, Y. Cao, G. Ren and Z. Liang, Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A Review, J. Mol. Liq. Vol. 389 (2023), 122821.
DOI: 10.1016/j.molliq.2023.122821
Google Scholar
[15]
L. Lavagna, R. Nisticò, S. Musso and M. Pavese, Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: A review, Mater. Today Chem. Vol. 20 (2021) 100477.
DOI: 10.1016/j.mtchem.2021.100477
Google Scholar
[16]
J.A. Dean, Lange's handbook of chemistry, 15th ed., McGraw-Hill, New York, NY (1999).
Google Scholar
[17]
Information on https://www.sigmaaldrich.com/US/en/sds/aldrich/o709
Google Scholar
[18]
The Merck Index: An encyclopedia of chemicals, drugs, and biologicals, 11th Ed. Merck Publishing Group, Rahway, NJ (1989).
Google Scholar
[19]
F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc and N. Koratkar, Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives, J. Phys. Chem. C. Vol. 115, No. 17 (2011) p.8753–8758.
DOI: 10.1021/jp200838s
Google Scholar
[20]
L. Ventolà, M. Ramírez, T. Calvet, X. Solans, M.A. Cuevas-Diarte, P. Negrier, D. Mondieig, J.C. van Miltenburg and H.A.J. Oonk, Polymorphism of N-Alkanols: 1-Heptadecanol, 1-Octadecanol, 1-Nonadecanol, and 1-Eicosanol, Chem. Mater. Vol. 14, No. 2 (2002) p.508–517.
DOI: 10.1021/cm011010h
Google Scholar
[21]
J.L. Zeng, Z. Cao, D.W. Yang, L.X. Sun and L. Zhang, Thermal conductivity enhancement of Ag nanowires on an organic phase change material, J. Therm. Anal. Calorim. Vol. 101 (2010) p.385–389.
DOI: 10.1007/s10973-009-0472-y
Google Scholar
[22]
P. Zhang, X. Xiao and Z.W. Ma, A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy. Vol. 165, No. 1 (2016) p.472–510.
DOI: 10.1016/j.apenergy.2015.12.043
Google Scholar
[23]
D.G. Atinafu, Y.S. Ok, H.W. Kua and S. Kim, Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry, Appl. Therm. Eng. Vol. 181 (2020) 115960.
DOI: 10.1016/j.applthermaleng.2020.115960
Google Scholar
[24]
J.L. Zeng, Z. Cao, D.W. Yang, F. Xu, L.X. Sun, X.F. Zhang and L. Zhang, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Therm. Anal. Calorim. Vol. 95 (2009) p.507–512.
DOI: 10.1007/s10973-008-9275-9
Google Scholar
[25]
ASTM D5470-17, Standard test method for thermal transmission properties of thermally conductive electrical insulation materials, ASTM Int. (2017), p.1–6.
Google Scholar
[26]
ASTM E1530-19, Standard test method for evaluating the resistance to thermal transmission by the guarded heat flow meter technique, ASTM Int. (2019), p.1–8.
DOI: 10.1520/e1530-04
Google Scholar
[27]
J. Gu, Thermally conductive polymer composites, 1st Ed., Elsevier, Amsterdam, Netherlands (2023).
Google Scholar
[28]
Y. K. Godovsky, Thermophysical properties of polymers, 1st Ed., Springer, New York, NY (1992).
Google Scholar
[29]
M. Čáchová, D. Koňáková, E. Vejmelková, M. Keppert and R. Černý, Mechanical and thermal properties of the Czech marbles, AIP Conf. Proc. Vol. 1738, No. 1 (2016) 280010
DOI: 10.1063/1.4952070
Google Scholar
[30]
L. Laloui and A.F. Rotta Loria, Analysis and design of energy geostructures - theoretical essentials and practical application, 1st Ed., Academic Press, Cambridge, MA (2019).
Google Scholar
[31]
P. Cheng, X. Chen, H. Gao, X. Zhang, Z. Tang, A. Li and G. Wang, Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: fundamentals and applications, Nano Energy. Vol. 85 (2021) 105948.
DOI: 10.1016/j.nanoen.2021.105948
Google Scholar
[32]
R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd Ed. John Wiley & Sons, Hoboken, NJ (2006).
Google Scholar
[33]
J. J. Moore, E. A. Boyce, M. J. Brooks, Chemical metallurgy, 1st Ed. Butterworth-Heinemann, Oxford, United Kingdom (2013).
Google Scholar
[34]
K. Ruan, X. Shi, Y. Guo and J. Gu, Interfacial thermal resistance in thermally conductive polymer composites: A review, Compos. Commun. Vol. 22 (2020) 100518.
DOI: 10.1016/j.coco.2020.100518
Google Scholar
[35]
K.V. Chandekar, B. Palanivel, F.H. Alkallas, A.B.G. Trabelsi, A. Khan, I.M. Ashraf, S. AlFaify and M. Shkir, Photocatalytic activities of Mg doped NiO NPs for degradation of methylene blue dye for harmful contaminants: a kinetics, mechanism and recyclability, J. Phys. Chem. Solids. Vol. 178 (2023) 111345.
DOI: 10.1016/j.jpcs.2023.111345
Google Scholar
[36]
I. Gosens, J.A. Post, L.J. de la Fonteyne, E.H. Jansen, J.W. Geus, F.R. Cassee and W.H. de Jong, impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation, Part. Fibre Toxicol. Vol. 7 (2010) Art. No. 37.
DOI: 10.1186/1743-8977-7-37
Google Scholar
[37]
C.P. Martin, M.O. Blunt and P. Moriarty, Nanoparticle networks on silicon: self-organized or disorganized? Nano Lett. Vol. 4, No. 12 (2004) p.2389–2392.
DOI: 10.1021/nl048536w
Google Scholar
[38]
H. Bönnemann, N. Waldöfner, H.-G. Haubold and T. Vad, Preparation and characterization of three-dimensional Pt nanoparticle networks, Chem. Mater. Vol. 14, No. 3 (2002) p.1115–1120.
DOI: 10.1021/cm0111837
Google Scholar
[39]
H. Pang, L. Xu, D.-X. Yan and Z.-M. Li, Conductive polymer composites with segregated structures, Prog. Polym. Sci. Vol. 39, No. 11 (2014) p.1908–1933.
DOI: 10.1016/j.progpolymsci.2014.07.007
Google Scholar