Calcium Alginate-Glycerol Gel as an Organic Matrix to Induce the Mineralisation and Growth of Calcium Carbonate as a New Eco-Friendly Binder Composite

Article Preview

Abstract:

Natural carbonated composites are formed by calcium carbonate crystals embedded within an organic matrix that the living organism excretes. In this study, a solvent made with sodium alginate, glycerol and sodium hydroxide was used to promote the mineralisation of biomimetic calcium carbonate. Carbon dioxide was captured and stored as a carbonate binder composite, and the cementitious mechanism toward sand particles was revealed. The binder composite comprises amorphous calcium carbonate, calcium alginate-glycerol gel and calcite. Organic additives were crucial to promote the mineralisation of the most stable calcium carbonate polymorph, calcite. The final calcite crystals presented a peanut-like shape, detached from a structured sea urchin-like particle. An estimated 0.15 tonne of carbon dioxide could be permanently stored in 1 tonne of the biomimetic calcium carbonate and sand composite. The composite block presented a compressive strength and elastic modulus of 0.85 and 21.3 MPa, respectively. It is believed that the cementitious mechanism of the carbonate binder composite is formed through the crystallisation of amorphous calcium carbonate (ACC) embedded inside a three-dimensional organic gel enriched with calcium ions into calcite. Hence, calcium carbonate mineralisation mediated by sodium alginate and glycerol introduces new possibilities to create a novel, more sustainable, environmentally friendly binder material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 367)

Pages:

49-60

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Makul, N., Principles of Low-Carbon Cement. 2021, Springer International Publishing AG: Switzerland. pp.43-77.

Google Scholar

[2] Oguntona, O.A. and C.O. Aigbavboa, Biomimetic Materials and Technologies for Carbon Neutral Cities in South Africa: A Literature Review. Procedia engineering, 2017. 196: pp.152-158.

DOI: 10.1016/j.proeng.2017.07.185

Google Scholar

[3] Chu, J., et al., Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 2014. 9(2): pp.277-285.

DOI: 10.1007/s11440-013-0278-8

Google Scholar

[4] Kakisawa, H. and T. Sumitomo, The toughening mechanism of nacre and structural materials inspired by nacre. Science and technology of advanced materials, 2011. 12(6): pp.064710-064710.

DOI: 10.1088/1468-6996/12/6/064710

Google Scholar

[5] Asenath-Smith, E., et al., Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. Advanced functional materials, 2012. 22(14): pp.2891-2914.

DOI: 10.1002/adfm.201200300

Google Scholar

[6] Raiteri, P. and J.D. Gale, Water Is the Key to Nonclassical Nucleation of Amorphous Calcium Carbonate. Journal of the American Chemical Society, 2010. 132(49): pp.17623-17634.

DOI: 10.1021/ja108508k

Google Scholar

[7] Galan, I., et al., Amorphous and crystalline CaCO3 phase transformation at high solid/liquid ratio – Insight to a novel binder system. Journal of Crystal Growth, 2022. 580: p.126465.

DOI: 10.1016/j.jcrysgro.2021.126465

Google Scholar

[8] Du, H. and E. Amstad, Water: How does it influence the CaCO3 formation? Angewandte Chemie International Edition, 2019. 59(5): pp.1798-1816.

DOI: 10.1002/anie.201903662

Google Scholar

[9] Meldrum, F.C. and S.T. Hyde, Morphological influence of magnesium and organic additives on the precipitation of calcite. Journal of crystal growth, 2001. 231(4): pp.544-558.

DOI: 10.1016/s0022-0248(01)01519-6

Google Scholar

[10] Marsh, M.E., Polyanion-mediated mineralization--assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma, 1994. 177(3/4): pp.108-122.

DOI: 10.1007/bf01378985

Google Scholar

[11] Smeets, P.J.M., et al., Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nature Materials, 2015. 14(4): pp.394-399.

DOI: 10.1038/nmat4193

Google Scholar

[12] Díaz-Dosque, M., et al., Use of biopolymers as oriented supports for the stabilization of different polymorphs of biomineralized calcium carbonate with complex shape. Journal of crystal growth, 2008. 310(24): pp.5331-5340.

DOI: 10.1016/j.jcrysgro.2008.08.057

Google Scholar

[13] Bassett, D.C., et al., Stabilization of Amorphous Calcium Carbonate with Nanofibrillar Biopolymers. Advanced functional materials, 2012. 22(16): pp.3460-3469.

DOI: 10.1002/adfm.201103144

Google Scholar

[14] Combes, C., et al., Preparation, physical–chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials, 2006. 27(9): pp.1945-1954.

DOI: 10.1016/j.biomaterials.2005.09.026

Google Scholar

[15] Cheng, L., et al. Soil stabilisation by microbial-induced calcite precipitation (MICP): investigation into some physical and environmental aspects. in 7th international congress on environmental geotechnics. 2014. Engineers Australia Melbourne, Australia.

Google Scholar

[16] Mujah, D., M.A. Shahin, and L. Cheng, State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 2017. 34(6): pp.524-537.

DOI: 10.1080/01490451.2016.1225866

Google Scholar

[17] He, J., et al., Recent development on optimization of bio-cementation for soil stabilization and wind erosion control. Biogeotechnics, 2023: p.100022.

DOI: 10.1016/j.bgtech.2023.100022

Google Scholar

[18] Fang, Y., et al., Multiple Steps and Critical Behaviors of the Binding of Calcium to Alginate. The Journal of Physical Chemistry B, 2007. 111(10): pp.2456-2462.

DOI: 10.1021/jp0689870

Google Scholar

[19] Bychkov, A.Y., et al., Experimental determination of calcite solubility and the stability of aqueous Ca-- and Na--carbonate and --bicarbonate complexes at 100--160 [degrees]C and 1--50 bar pCO.sub.2 using in situ pH measurements. Geochimica et cosmochimica acta, 2020. 290: p.352.

DOI: 10.1016/j.gca.2020.09.004

Google Scholar

[20] Gao, C., E. Pollet, and L. Avérous, Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food hydrocolloids, 2017. 63: pp.414-420.

DOI: 10.1016/j.foodhyd.2016.09.023

Google Scholar

[21] Chrastil, J., Gelation of calcium alginate. Influence of rice starch or rice flour on the gelation kinetics and on the final gel structure. Journal of agricultural and food chemistry, 1991. 39(5): pp.874-876.

DOI: 10.1021/jf00005a012

Google Scholar

[22] Calvo, E.G., M.A. Arranz, and P. Letón, Effects of impurities in the kinetics of calcite decomposition. Thermochimica acta, 1990. 170: pp.7-11.

DOI: 10.1016/0040-6031(90)80519-5

Google Scholar

[23] Lee, S.-W., et al., Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis. Materials & design, 2016. 112: pp.367-373.

DOI: 10.1016/j.matdes.2016.09.099

Google Scholar

[24] Du, H., et al., Amorphous CaCO3: Influence of the Formation Time on Its Degree of Hydration and Stability. Journal of the American Chemical Society, 2018. 140(43): pp.14289-14299.

DOI: 10.1021/jacs.8b08298

Google Scholar

[25] Cheng, L., et al., The underlying role of sodium tripolyphosphate on the cementitious mechanism of calcium carbonate binder. Composites Part B: Engineering, 2022. 247: p.110362.

DOI: 10.1016/j.compositesb.2022.110362

Google Scholar

[26] Meftah, N. and M.S. Mahboub, Spectroscopic Characterizations of Sand Dunes Minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD Analyses. SILICON, 2020. 12(1): pp.147-153.

DOI: 10.1007/s12633-019-00109-5

Google Scholar

[27] Ma, Y. and Q. Feng, Alginate hydrogel-mediated crystallization of calcium carbonate. Journal of Solid State Chemistry, 2011. 184(5): pp.1008-1015.

DOI: 10.1016/j.jssc.2011.03.008

Google Scholar

[28] Mu, Z., et al., Pressure-driven fusion of amorphous particles into integrated monoliths. Science (American Association for the Advancement of Science), 2021. 372(6549): pp.1466-1470.

DOI: 10.1126/science.abg1915

Google Scholar

[29] Meldrum, F.C. and H. Cölfen, Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chemical Reviews, 2008. 108(11): pp.4332-4432.

DOI: 10.1021/cr8002856

Google Scholar

[30] Cantaert, B., et al., Use of Amorphous Calcium Carbonate for the Design of New Materials. ChemPlusChem (Weinheim, Germany), 2017. 82(1): pp.107-120.

DOI: 10.1002/cplu.201600457

Google Scholar

[31] Xu, X., J.T. Han, and K. Cho, Formation of Amorphous Calcium Carbonate Thin Films and Their Role in Biomineralization. Chemistry of Materials, 2004. 16(9): pp.1740-1746.

DOI: 10.1021/cm035183d

Google Scholar

[32] Oaki, Y. and H. Imai, Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media. Crystal Growth & Design, 2003. 3(5): pp.711-716.

DOI: 10.1021/cg034053e

Google Scholar

[33] Montes-Hernandez, G., et al., Formation of porous calcite mesocrystals from CO2-H2O-Ca(OH)2 slurry in the presence of common domestic drinks. 2015. 17(3): pp.5725-5733.

DOI: 10.1039/c4ce01598c

Google Scholar

[34] Nudelman, F., Nacre biomineralisation: A review on the mechanisms of crystal nucleation. Seminars in cell & developmental biology, 2015. 46: pp.2-10.

DOI: 10.1016/j.semcdb.2015.07.004

Google Scholar

[35] Nassif, N., et al., Amorphous Layer around Aragonite Platelets in Nacre. Proceedings of the National Academy of Sciences - PNAS, 2005. 102(36): pp.12653-12655.

DOI: 10.1073/pnas.0502577102

Google Scholar

[36] Zhang, G. and J. Xu, From colloidal nanoparticles to a single crystal: New insights into the formation of nacre's aragonite tablets. Journal of Structural Biology, 2013. 182(1): pp.36-43.

DOI: 10.1016/j.jsb.2013.01.010

Google Scholar