Immobilization of Silver Nanoparticles on Silica Particles by Silver Mirror Reaction

Article Preview

Abstract:

This paper presents the synthesis of metallic silver (Ag) nanoparticles immobilized on silica (SiO2) particles. Ag immobilization was carried out via the Ag mirror reaction using two types of reducing reagents: D-glucose and formaldehyde (HCHO). The effects of Ag immobilization conditions, such as Ag nitrate concentration, SiO2 concentration, reaction time, and reducing reagent concentration, were investigated. The particle morphology is related to the ionic strength of the solution. As a result, Ag immobilization was successfully performed while minimizing the formation of large metallic Ag nanoparticles and/or the aggregation of metallic Ag nanoparticles in the HCHO system with a reaction time of 5 min and HCHO concentration of 1.5×10-4 M, producing SiO2 particles (92.5±7.3 nm) immobilized with metallic Ag nanoparticles 5–15 nm in size.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 370)

Pages:

3-9

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.B. Albeladi, S.A. AL-Thabaiti and Z. Khan: J. Mol. Liq. Vol. 302 (2020), p.112565

Google Scholar

[2] M.S. Mehata: Mater. Sci. Eng. B Vol. 273 (2021), p.115418

Google Scholar

[3] K. Shanmugaraj, T. Sasikumar, C.H. Campos, M. Ilanchelian, R.V. Mangalaraja and C.C. Torres: Spectrochim. Acta A Vol. 236 (2020) p.118281

DOI: 10.1016/j.saa.2020.118281

Google Scholar

[4] M. Kobayashi, M. Skarba, P. Galletto, D. Cakara and M. Borkovec: J. Colloid Interface Sci. Vol. 292 (2005), p.139

DOI: 10.1016/j.jcis.2005.05.093

Google Scholar

[5] F. Rancan, Q. Gao, C. Graf, S. Troppens, S. Hadam, S. Hackbarth, C. Kembuan, U. Blume-Peytavi, E. Rühl, J. Lademann and A. Vogt: ACS Nano Vol. 6 (2012), p.6829

DOI: 10.1021/nn301622h

Google Scholar

[6] E.D.E.R. Hyde, A. Seyfaee, F. Neville and R. Moreno-Atanasio: Ind. Eng. Chem. Res. Vol. 55 (2016), p.8891

DOI: 10.1021/acs.iecr.6b01839

Google Scholar

[7] Z. Chen, X. Chen, L. Zheng, T. Gang, T. Cui, K. Zhang and B. Yang: J. Colloid Interface Sci. Vol. 285 (2005), 146

Google Scholar

[8] Y. Sohn: J. Mol. Catal. A Vol. 379 (2013), p.59

Google Scholar

[9] C. Xu , W. Li, Y. Wei and X. Cui: Mater. Design Vol. 83 (2015), p.745

Google Scholar

[10] J.E. Chen, Q. Wang, K.R. Shull and J.J. Richards: J. Colloid Interface Sci. Vol. 576 (2020), p.376

Google Scholar

[11] K. Araki, N. Yamauchi, S. Tada, Y. Kobayashi: J. Cluster Sci. Vol. 34 (2024), p.1573

Google Scholar

[12] T. Sugimoto and M. Kobayashi: Colloids Surf. A Vol. 603 (2020) p.125234

Google Scholar

[13] K. Dhangar, M. Kumar, M. Aouad, J. Mahlknecht and N.P. Raval: Chemosphere Vol. 311 (2023) p.137088

DOI: 10.1016/j.chemosphere.2022.137088

Google Scholar

[14] J. Gao, T. Sugimoto and M. Kobayashi: J. Colloid Interface Sci. Vol. 638 (2023) p.733

Google Scholar