[1]
W. Spengler, R. Kaiser, "First and Second Order Raman Scattering in Transition Metal Compounds" Solid State Commun. 18 (1976) 881-884.
DOI: 10.1016/0038-1098(76)90228-3
Google Scholar
[2]
L. E. McNeil, M. Grimsditch, R. H. French, "Vibrational Spectroscopy of Aluminum Nitride" J. Am. Ceram. Soc. 76 (1993) 1132-36.
Google Scholar
[3]
D. Tuschel, "Raman Spectroscopy and Imaging of Low-Energy Phonons" Spectroscopy, 30 (2015) 18.
Google Scholar
[4]
X. Cong, X-L. Liu, M-L. Lin, P-H. Tan, "Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials" npj 2D Mater. Appl., 4 (2020) 13.
DOI: 10.1038/s41699-020-0140-4
Google Scholar
[5]
D. L. Rousseau, R. P. Bauman S. P. S. Porto, "Normal Mode Determination in Crystals" J. Raman Spectrosc., 10 (1981) 253.
Google Scholar
[6]
M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory: Application to the Physics of Condensed Matter, Springer, 2008.
Google Scholar
[7]
C. P. Constable, J. Yarwood, W-D. Munz, "Raman microscopic studies of PVD hard coatings" Surf. Coat. Tech. 116-119 (1999) 155-159.
DOI: 10.1016/s0257-8972(99)00072-9
Google Scholar
[8]
H. C. Barshilia, K.S. Rajam, "Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings" J. Mater. Res. 19 (2004) 3196.
DOI: 10.1557/jmr.2004.0444
Google Scholar
[9]
H. C. Barshilia, K. S. Rajam, "A Raman-scattering study on the interface structure of nanolayered TiAlN/TiN and TiN/NbN multilayer thin films grown by reactive dc magnetron sputtering" J. Appl. Phys. 98 (2005) 014311.
DOI: 10.1063/1.1946193
Google Scholar
[10]
R. Kaindl, B. Sartory, J. Neidhardt, R. Franz, A. Reiter, P. Polcik, R. Tessadri, C. Mitterer, "Semi-quantitative chemical analysis of hard coatings by Raman micro-spectroscopy: the aluminium chromium nitride system as an example" Anal. Bioanal. Chem. 389 (2007) 1569–1576.
DOI: 10.1007/s00216-007-1540-4
Google Scholar
[11]
X-J. Chen, V. V. Struzhkin, S. Kung, H-K. Mao, R. J. Hemley, A. N. Christensen, "Pressure-induced phonon frequency shifts in transition-metal nitrides" Phys. Rev. B 70 (2004) 014501.
DOI: 10.1103/physrevb.70.014501
Google Scholar
[12]
S. Das, S. Guha, R. Ghadai, D. Kumar, B. P. Swain, "Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films" Appl. Phys. A, 123 (2017) 412.
DOI: 10.1007/s00339-017-1032-0
Google Scholar
[13]
J. Baronins, M. Antonov, S. Bereznev, T. Raadik, I. Hussainova, "Raman Spectroscopy for Reliability Assessment of Multilayered AlCrN Coating in Tribo-Corrosive Conditions" Coatings 8 (2018) 229.
DOI: 10.3390/coatings8070229
Google Scholar
[14]
P. Cheng, T. Ye, H. Zeng, J. Ding, "Raman spectra investigation on the pressure-induced phase transition in titanium nitride (TiN)", AIP Adv. 10 (2020) 045110.
DOI: 10.1063/1.5128882
Google Scholar
[15]
J. Tlusty, Manufacturing Processes and Equipment, Prentice Hall, Upper Saddle River, NJ 2000.
Google Scholar
[16]
J. P. Urbansky, P. Koshy, R. C. Dewes, D. K. Aspinwall, "High speed machining of moulds and dies for net shape manufacture" Materials & Design 21 (2000) 395402.
DOI: 10.1016/s0261-3069(99)00092-8
Google Scholar
[17]
B. Breidenstein, N. Vogel, H. Behrens, M. Dietrich, J. M. Andersson, "Locally Resolved Residual Stress Measurements in (Al,Ti)N Coatings Using Raman Spectroscopy" Tribol. Ind. 44 (2022) 143-149.
DOI: 10.24874/ti.1144.06.21.08
Google Scholar
[18]
D. L. A. de Faria, S. V. Silva, M. T. de Oliveira, "Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides" J. Raman Spectrosc., 28 (1997) 873-878.
DOI: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b
Google Scholar
[19]
O.N. Shebanova, P. Lazor, "Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum" J Solid State Chem. 174 (2003) 424–430.
DOI: 10.1016/s0022-4596(03)00294-9
Google Scholar
[20]
L. Slavov, M.V. Abrashev, T. Merodiiska, Ch. Gelev, R.E. Vandenberghe, I. Markova-Deneva, I. Nedkov, "Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids" J. Magn. Magn. Mater. 322 (2010) 1904–1911.
DOI: 10.1016/j.jmmm.2010.01.005
Google Scholar
[21]
H. Kato, "Severe–mild wear transition by supply of oxide particles on sliding surface", Wear 255 (2003) 426–429.
DOI: 10.1016/s0043-1648(03)00077-2
Google Scholar
[22]
M. M. De Oliveira Junior, H. L. Costa1, W.M. Silva Junior, J.D.B. De Mello, 'Effect of iron oxide debris on the reciprocating sliding wear of tool steels", Wear 426–427 (2019) 1065–1075.
DOI: 10.1016/j.wear.2018.12.047
Google Scholar
[23]
M. Praveena, C. D. Bain, V. Jayaram, S.K. Biswas, "Total internal reflection (TIR) Raman tribometer: a new tool for in situ study of friction-induced material transfer" RSC Adv. 3 (2013) 5401-5411.
DOI: 10.1039/c3ra00131h
Google Scholar