Surface Wettability Response of Hydroxyapatite-Doped Coatings on Metallic Biomaterials: A Concise Review

Article Preview

Abstract:

The surface wettability of metallic biomaterials significantly influences the biological response of biomedical implants. However, the optimal degree of wettability depends on the specific coating or surface treatment applied to the biomaterial. Researchers have widely utilised hydroxyapatite coatings to modify implant surfaces to enhance bioactivity, biocompatibility, and osseointegration. This review article discussed the impact of hydroxyapatite-doped coatings on the surface wettability of metallic biomaterials. A systematic search of Scopus and Web of Science databases was conducted to review recent studies investigating the wettability and biological response of hydroxyapatite-doped coatings applied through standard implant surface deposition techniques. Results reveal that hydroxyapatite-doped coatings are typically hydrophilic and have higher surface energy than uncoated hydrophobic metallic surfaces. The hydrophilic nature promotes better interaction with biological fluids, resulting in cell adhesion and proliferation. The rough and porous surface increases wettability as fluid can easily penetrate the craters. Further research may elucidate the complex connectivity of deposition method process parameters with surface wettability and biological outcomes. This review briefly overviews current research on hydroxyapatite-doped coatings and their effects on surface wettability and biointegration.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 370)

Pages:

61-72

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Breme H, Biehl V, Reger N, Gawalt E. Metallic biomaterials: Introduction. Handb Biomater Prop Second Ed 2016:151–8.

DOI: 10.1007/978-1-4939-3305-1_14

Google Scholar

[2] Harun WSW, Asri RIM, Alias J, Zulkifli FH, Kadirgama K, Ghani SAC, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int 2018;44:1250–68.

DOI: 10.1016/j.ceramint.2017.10.162

Google Scholar

[3] Yan X, Cao W, Li H. Biomedical alloys and physical surface modifications: A mini-review. Materials (Basel) 2022;15.

DOI: 10.3390/ma15010066

Google Scholar

[4] Bisaria H, Bhusan Patra B, Mohanty S. Surface modification during hydroxyapatite powder mixed electric discharge machining of metallic biomaterials: a review. Surf Eng 2022;38:680–706.

DOI: 10.1080/02670844.2022.2155406

Google Scholar

[5] Choi SR, Kwon JW, Suk KS, Kim HS, Moon SH, Park SY, et al. The Clinical Use of Osteobiologic and Metallic Biomaterials in Orthopedic Surgery: The Present and the Future. Materials (Basel) 2023;16.

DOI: 10.3390/ma16103633

Google Scholar

[6] Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, et al. Metallic biomaterials: Current challenges and opportunities. Materials (Basel) 2017;10.

DOI: 10.3390/ma10080884

Google Scholar

[7] Eliaz N. Corrosion of metallic biomaterials: A review. Materials (Basel) 2019;12:407.

DOI: 10.3390/ma12030407

Google Scholar

[8] Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, et al. Corrosion and surface modification on biocompatible metals: A review. Mater Sci Eng C 2017;77:1261–74.

DOI: 10.1016/j.msec.2017.04.102

Google Scholar

[9] Ali S, Abdul Rani AM, Baig Z, Ahmed SW, Hussain G, Subramaniam K, et al. Biocompatibility and corrosion resistance of metallic biomaterials. Corros Rev 2020;38:381–402.

DOI: 10.1515/corrrev-2020-0001

Google Scholar

[10] Xiao M, Chen YM, Biao MN, Zhang XD, Yang BC. Bio-functionalisation of biomedical metals. Mater Sci Eng C 2017;70:1057–70.

DOI: 10.1016/j.msec.2016.06.067

Google Scholar

[11] Gutiérrez Púa LDC, Rincón Montenegro JC, Fonseca Reyes AM, Zambrano Rodríguez H, Paredes Méndez VN. Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. J Mater Sci 2023;58:3879–908.

DOI: 10.1007/s10853-023-08237-5

Google Scholar

[12] Shi L, Shi L, Wang L, Duan Y, Lei W, Wang Z, et al. The Improved Biological Performance of a Novel Low Elastic Modulus Implant. PLoS One 2013;8:e55015.

DOI: 10.1371/journal.pone.0055015

Google Scholar

[13] Singh G, Saini A. Developments in metallic biomaterials and surface coatings for various biomedical applications. In: Singh S, Prakash C, Ramakrishna S, Krolczyk G, editors. Lect. Notes Mech. Eng., Singapore: Springer Singapore; 2020, p.197–206.

DOI: 10.1007/978-981-15-4748-5_20

Google Scholar

[14] Nouri A, Wen C. Introduction to surface coating and modification for metallic biomaterials. In: Wen CBT-SC and M of MB, editor. Surf. Coat. Modif. Met. Biomater., Woodhead Publishing; 2015, p.3–60.

DOI: 10.1016/B978-1-78242-303-4.00001-6

Google Scholar

[15] Miri Z, Haugen HJ, Loca D, Rossi F, Perale G, Moghanian A, et al. Review on the strategies to improve the mechanical strength of highly porous bone bioceramic scaffolds. J Eur Ceram Soc 2023;44:23–42.

DOI: 10.1016/j.jeurceramsoc.2023.09.003

Google Scholar

[16] Drevet R, Fauré J, Benhayoune H. Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review. Coatings 2023;13.

DOI: 10.3390/coatings13061091

Google Scholar

[17] Bushra A, Subhani A, Islam N. A comprehensive review on biological and environmental applications of chitosan-hydroxyapatite biocomposites. Compos Part C Open Access 2023;12.

DOI: 10.1016/j.jcomc.2023.100402

Google Scholar

[18] Saxena V, Pandey L, Srivatsan TS. Nano Hydroxyapatite (nano-HAp): A Potential Bioceramic for Biomedical Applications. Curr Nanomater 2021;6:207–21.

DOI: 10.2174/2405461506666210412154837

Google Scholar

[19] Chakraborty R, Sengupta S, Saha P, Das K, Das S. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition. Mater Sci Eng C 2016;69:875–83.

DOI: 10.1016/j.msec.2016.07.044

Google Scholar

[20] Bryington MS, Hayashi M, Kozai Y, Vandeweghe S, Andersson M, Wennerberg A, et al. The influence of nano hydroxyapatite coating on osseointegration after extended healing periods. Dent Mater 2013;29:514–20.

DOI: 10.1016/j.dental.2013.02.004

Google Scholar

[21] Mihailescu N, Stan GE, Duta L, Chifiriuc MC, Bleotu C, Sopronyi M, et al. Structural, compositional, mechanical characterisation and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF2 or MgO for implants functionalisation. Mater Sci Eng C 2016;59:863–74.

DOI: 10.1016/j.msec.2015.10.078

Google Scholar

[22] Wen C, Zhan X, Huang X, Xu F, Luo L, Xia C. Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method. Surf Coatings Technol 2017;317:125–33.

DOI: 10.1016/j.surfcoat.2017.03.034

Google Scholar

[23] Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, et al. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater 2014;10:2907–18.

DOI: 10.1016/j.actbio.2014.03.032

Google Scholar

[24] Fadzil AF bin A, Pramanik A, Basak AK, Prakash C, Shankar S. Role of surface quality on biocompatibility of implants - A review. Ann 3D Print Med 2022;8:100082.

DOI: 10.1016/j.stlm.2022.100082

Google Scholar

[25] Villapun Puzas VM, Carter LN, Schröder C, Colavita PE, Hoey DA, Webber MA, et al. Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4V. ACS Biomater Sci Eng 2022;8:4311–26.

DOI: 10.1021/acsbiomaterials.2c00298

Google Scholar

[26] Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater 2014;10:2894–906.

DOI: 10.1016/j.actbio.2014.02.040

Google Scholar

[27] Kung CH, Sow PK, Zahiri B, Mérida W. Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. Adv Mater Interfaces 2019;6:1900839.

DOI: 10.1002/admi.201900839

Google Scholar

[28] Song JW, Fan LW. Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer. Adv Colloid Interface Sci 2021;288:102339.

DOI: 10.1016/j.cis.2020.102339

Google Scholar

[29] Sun L, Guo J, Chen H, Zhang D, Shang L, Zhang B, et al. Tailoring Materials with Specific Wettability in Biomedical Engineering. Adv Sci 2021;8:2100126.

DOI: 10.1002/advs.202100126

Google Scholar

[30] Gul IA, Abdul-Rani AM, Al-Amin M, Garba E. Elucidating Powder-Mixed Electric Discharge Machining Process, Applicability, Trends and Futuristic Perspectives. Machines 2023;11.

DOI: 10.3390/machines11030381

Google Scholar

[31] Joshi AY, Joshi AY. A systematic review on powder mixed electrical discharge machining. Heliyon 2019;5:e02963.

DOI: 10.1016/j.heliyon.2019.e02963

Google Scholar

[32] Al-Amin M, Abdul-Rani AM, Rana M, Hastuty S, Danish M, Rubaiee S, et al. Evaluation of modified 316L surface properties through HAp suspended EDM process for biomedical application. Surfaces and Interfaces 2022;28:101600.

DOI: 10.1016/j.surfin.2021.101600

Google Scholar

[33] Al-Amin M, Abdul-Rani AM, Rao TVVLN, Danish M, Rubaiee S, Mahfouz A bin, et al. Investigation of machining and modified surface features of 316L steel through novel hybrid of HA/CNT added-EDM process. Mater Chem Phys 2022;276:125320.

DOI: 10.1016/j.matchemphys.2021.125320

Google Scholar

[34] Devgan S, Sidhu SS. Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy. Appl Phys A Mater Sci Process 2020;126:1–16.

DOI: 10.1007/s00339-020-3391-1

Google Scholar

[35] Yaşar H, Ekmekci B. The effect of micro and nano hydroxyapatite powder on biocompatibility and surface integrity of Ti6Al4V (ELI) in powder mixed electrical discharge machining. Surf Topogr Metrol Prop 2021;9:15015.

DOI: 10.1088/2051-672X/abdda2

Google Scholar

[36] Ou SF, Wang CY. Fabrication of a hydroxyapatite-containing coating on Ti-Ta alloy by electrical discharge coating and hydrothermal treatment. Surf Coatings Technol 2016;302:238–43.

DOI: 10.1016/j.surfcoat.2016.06.013

Google Scholar

[37] Akhtar M, Uzair SA, Rizwan M, Ur Rehman MA. The Improvement in Surface Properties of Metallic Implant via Magnetron Sputtering: Recent Progress and Remaining Challenges. Front Mater 2022;8.

DOI: 10.3389/fmats.2021.747169

Google Scholar

[38] Dinu M, Kiss AE, Parau AC, Braic V, Vitelaru C, Braic M, et al. Influence of thermal treatment on the roughness, corrosion resistance and wettability of hydroxyapatite films deposited by RF magnetron sputtering. Key Eng Mater 2014;587:297–302.

DOI: 10.4028/www.scientific.net/KEM.587.297

Google Scholar

[39] Grubova IY, Surmeneva MA, Ivanova AA, Kravchuk K, Prymak O, Epple M, et al. The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings. Surf Coatings Technol 2015;276:595–601.

DOI: 10.1016/j.surfcoat.2015.06.010

Google Scholar

[40] Surmeneva M, Nikityuk P, Hans M, Surmenev R. Deposition of ultrathin nano-hydroxyapatite films on laser micro-textured titanium surfaces to prepare a multiscale surface topography for improved surfacewettability/energy. Materials (Basel) 2016;9.

DOI: 10.3390/ma9110862

Google Scholar

[41] Behera RR, Das A, Pamu D, Pandey LM, Sankar MR. Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V. J Mech Behav Biomed Mater 2018;86:143–57.

DOI: 10.1016/j.jmbbm.2018.06.020

Google Scholar

[42] Bhawanjali S, Revathi A, Popat KC, Geetha M. Surface modification of Ti-13Nb-13Zr and Ti-6Al-4V using electrophoretic deposition (EPD) for enhanced cellular interaction. Mater Technol 2014;29.

DOI: 10.1179/1753555713Y.0000000119

Google Scholar

[43] Farnoush H, Aldiç G, Çimenoğlu H. Functionally graded HA-TiO2 nanostructured composite coating on Ti-6Al-4V substrate via electrophoretic deposition. Surf Coatings Technol 2015;265:7–15.

DOI: 10.1016/j.surfcoat.2015.01.069

Google Scholar

[44] Bartmanski M, Cieslik B, Glodowska J, Kalka P, Pawlowski L, Pieper M, et al. Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceram Int 2017;43:11820–9.

DOI: 10.1016/j.ceramint.2017.06.026

Google Scholar

[45] Rafieerad AR, Bushroa AR, Nasiri-Tabrizi B, Baradaran S, Shahtalebi S, Khanahmadi S, et al. In-vitro bioassay of electrophoretically deposited hydroxyapatite–zirconia nanocomposite coating on Ti–6Al–7Nb implant. Adv Appl Ceram 2017;116:293–306.

DOI: 10.1080/17436753.2017.1313626

Google Scholar

[46] Ahmed Y, Ur Rehman MA. Improvement in the surface properties of stainless steel via zein/hydroxyapatite composite coatings for biomedical applications. Surfaces and Interfaces 2020;20:100589.

DOI: 10.1016/j.surfin.2020.100589

Google Scholar

[47] Woźniak A, Staszuk M, Reimann Ł, Bialas O, Brytan Z, Voinarovych S, et al. The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application. Arch Civ Mech Eng 2021;21.

DOI: 10.1007/s43452-021-00297-1

Google Scholar

[48] Bansal P, Singh G, Sidhu HS. Plasma-Sprayed Hydroxyapatite-Strontium Coating for Improved Corrosion Resistance and Surface Properties of Biodegradable AZ31 Mg Alloy for Biomedical Applications. J Mater Eng Perform 2021;30:1768–79.

DOI: 10.1007/s11665-021-05490-0

Google Scholar

[49] Bansal P, Singh G, Sidhu HS. Investigation of corrosion behavior and surface properties of plasma sprayed HA/Sr reinforced coatings on CoCr alloys. Mater Chem Phys 2020;253:123330.

DOI: 10.1016/j.matchemphys.2020.123330

Google Scholar

[50] Singh B, Singh G, Sidhu BS, Bhatia N. In-vitro assessment of HA-Nb coating on Mg alloy ZK60 for biomedical applications. Mater Chem Phys 2019;231:138–49.

DOI: 10.1016/j.matchemphys.2019.04.037

Google Scholar

[51] Singh B, Singh G, Sidhu BS. Analysis of corrosion behaviour and surface properties of plasma-sprayed composite coating of hydroxyapatite–tantalum on biodegradable Mg alloy ZK60. J Compos Mater 2019;53:2661–73.

DOI: 10.1177/0021998319839127

Google Scholar