A Novel Air-Flow Electrospinning Setup for Controlling Fiber Distribution and Morphology

Article Preview

Abstract:

Electrospinning (ES) is a vital technique for producing ultrafine polymer fibers and is widely used in various applications. However, conventional electrospinning setups with some polymer solutions face challenges like bead formation and inconsistent fiber diameters. Integrating airflow into the system helps stretch the fiber and speed up the evaporation of polymer jets, thereby improving fiber morphology. Despite these benefits, incorporating airflow complicates the setup and makes it less user-friendly, as achieving precise laminar airflow toward the jets is difficult. To address these problems, we developed a novel electrospinning attachment featuring easily adjustable slits incorporating controlled airflow with a pressure regulation system. The design allows for convenient adjustment of airflow direction through replaceable slits and blades. Its simplicity allows for easy blade replacement at different angles to control airflow toward the polymer jet. In our experiments, we tested two different slits angles of 30° and 60° (3D printed) to the setup. The results showed that controlled airflow significantly reduced bead formation and produced more uniform fiber diameters. With a 60° slit angle at 0.1 bar, the average fiber diameter was 647.6 nm, decreasing to 526.4 nm at 0.2 bar. Conversely, fibers spun with a 30° slit angle had an average diameter of 712.6 nm at 0.1 bar, with minimal change at 0.2 bar. These findings indicate that controlled laminar airflow with adjustable slit angles substantially improves the properties of electrospun fiber mats.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

37-44

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, Developments of Advanced Electrospinning Techniques: A Critical Review, Advanced Materials Technologies 6(11) (2021).

DOI: 10.1002/admt.202100410

Google Scholar

[2] C. Bavatharani, E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, K.M. Alsheetan, M.m. Al-Anazy, D. Ragupathy, Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review, Synthetic Metals 271 (2021).

DOI: 10.1016/j.synthmet.2020.116609

Google Scholar

[3] T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, Electrospinning of nanofibers, Journal of Applied Polymer Science 96(2) (2005) 557-569.

DOI: 10.1002/app.21481

Google Scholar

[4] Liu, Luo, Kuang, Wan, Liang, Jiang, Cong, He, Analysis and optimization of electrospinning parameters for fabricating thermoplastic polyurethanes (TPU) nanofibers by response surface methodology, Express Polym. Lett. 18 (2024) 807-818.

DOI: 10.3144/expresspolymlett.2024.60

Google Scholar

[5] C. Huang, N.L. Thomas, Fabrication of porous fibers via electrospinning: strategies and applications, Polymer Reviews 60(4) (2019) 595-647.

DOI: 10.1080/15583724.2019.1688830

Google Scholar

[6] J.M. Ameer, A.K. Pr, N. Kasoju, Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering, J Funct Biomater 10(3) (2019).

DOI: 10.3390/jfb10030030

Google Scholar

[7] J.-W. Liang, G. Prasad, S.-C. Wang, J.-L. Wu, S.-G. Lu, Enhancement of the Oil Absorption Capacity of Poly(Lactic Acid) Nano Porous Fibrous Membranes Derived via a Facile Electrospinning Method, Applied Sciences 9(5) (2019).

DOI: 10.3390/app9051014

Google Scholar

[8] H.J. Kim, H.R. Pant, N.J. Choi, C.S. Kim, Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air, Chemical Engineering Journal 230 (2013) 244-250.

DOI: 10.1016/j.cej.2013.06.090

Google Scholar

[9] A. Mamun, T. Blachowicz, L. Sabantina, Electrospun Nanofiber Mats for Filtering Applications-Technology, Structure and Materials, Polymers (Basel) 13(9) (2021).

DOI: 10.3390/polym13091368

Google Scholar

[10] T. Lu, J. Cui, Q. Qu, Y. Wang, J. Zhang, R. Xiong, W. Ma, C. Huang, Multistructured Electrospun Nanofibers for Air Filtration: A Review, ACS Appl Mater Interfaces 13(20) (2021) 23293-23313.

DOI: 10.1021/acsami.1c06520

Google Scholar

[11] M. Cao, F. Gu, C. Rao, J. Fu, P. Zhao, Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5, Sci Total Environ 666 (2019) 1011-1021.

DOI: 10.1016/j.scitotenv.2019.02.207

Google Scholar

[12] X. Liu, D. Jiang, Y. Qin, Z. Zhang, M. Yuan, ZnO-PLLA/PLLA Preparation and Application in Air Filtration by Electrospinning Technology, Polymers (Basel) 15(8) (2023).

DOI: 10.3390/polym15081906

Google Scholar

[13] K. Chen, W. Chou, L. Liu, Y. Cui, P. Xue, M. Jia, Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview, Sensors (Basel) 19(17) (2019).

DOI: 10.3390/s19173676

Google Scholar

[14] A. Veerabhadraiah, S. Ramakrishna, G. Angadi, M. Venkatram, V. Kanivebagilu Ananthapadmanabha, N.M. Hebbale NarayanaRao, K. Munishamaiah, Development of polyvinyl acetate thin films by electrospinning for sensor applications, Applied Nanoscience 7(7) (2017) 355-363.

DOI: 10.1007/s13204-017-0576-9

Google Scholar

[15] Y. Du, X. Zhang, P. Liu, D.G. Yu, R. Ge, Electrospun nanofiber-based glucose sensors for glucose detection, Front Chem 10 (2022) 944428.

DOI: 10.3389/fchem.2022.944428

Google Scholar

[16] J. Song, X. Lin, L.Y. Ee, S.F.Y. Li, M. Huang, A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing, Adv Fiber Mater 5(2) (2023) 429-460.

DOI: 10.1007/s42765-022-00237-5

Google Scholar

[17] A.D. Juncos Bombin, N.J. Dunne, H.O. McCarthy, Electrospinning of natural polymers for the production of nanofibres for wound healing applications, Mater Sci Eng C Mater Biol Appl 114 (2020) 110994.

DOI: 10.1016/j.msec.2020.110994

Google Scholar

[18] Y. Liu, C. Li, Z. Feng, B. Han, D.G. Yu, K. Wang, Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing, Biomolecules 12(12) (2022).

DOI: 10.3390/biom12121727

Google Scholar

[19] K. Ghosal, R. Augustine, A. Zaszczynska, M. Barman, A. Jain, A. Hasan, N. Kalarikkal, P. Sajkiewicz, S. Thomas, Novel drug delivery systems based on triaxial electrospinning based nanofibers, Reactive and Functional Polymers 163 (2021).

DOI: 10.1016/j.reactfunctpolym.2021.104895

Google Scholar

[20] B. Sierakowska, P. Radwan, Janus, Galek, Łysiak, Tupaj, Bogdał, Preparation and characterization of novel nanofibrous composites prepared by electrospinning as potential nerve guidance conduits (NGCs), Express Polym. Lett. 18 (2024) 819-834.

DOI: 10.3144/expresspolymlett.2024.61

Google Scholar

[21] C. Wang, H.S. Chien, C.H. Hsu, Y.C. Wang, C.T. Wang, H.A. Lu, Electrospinning of polyacrylonitrile solutions at elevated temperatures, Macromolecules 40(22) (2007) 7973-7983.

DOI: 10.1021/ma070508n

Google Scholar

[22] F.L. Huang, Q.F. Wei, J.X. Wang, Y.B. Cai, Y.B. Huang, Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning, E-Polymers (2008).

DOI: 10.1515/epoly.2008.8.1.1758

Google Scholar

[23] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagström, P. Westbroek, K. De Clerck, The effect of temperature and humidity on electrospinning, Journal of Materials Science 44(5) (2009) 1357-1362.

DOI: 10.1007/s10853-008-3010-6

Google Scholar

[24] N. Angel, L. Guo, F. Yan, H. Wang, L. Kong, Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology, Journal of Agriculture and Food Research 2 (2020).

DOI: 10.1016/j.jafr.2019.100015

Google Scholar

[25] B.A. Chinnappan, M. Krishnaswamy, H. Xu, M.E. Hoque, Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters, Polymers (Basel) 14(18) (2022).

DOI: 10.3390/polym14183719

Google Scholar

[26] P. Sanchez-Cid, J.F. Rubio-Valle, M. Jimenez-Rosado, V. Perez-Puyana, A. Romero, Effect of Solution Properties in the Development of Cellulose Derivative Nanostructures Processed via Electrospinning, Polymers (Basel) 14(4) (2022).

DOI: 10.3390/polym14040665

Google Scholar

[27] Rabello, Alvares, Ribeiro, Jardim, Thiré, Correlation between solution relative viscosity and the microstructural properties of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) – PHBV solution blow spun mats, Express Polym. Lett. 17 (2023) 1239-1256.

DOI: 10.3144/expresspolymlett.2023.94

Google Scholar

[28] A. Arinstein, E. Zussman, Electrospun polymer nanofibers: mechanical and thermodynamic perspectives, J. Polym. Sci., Part B: Polym. Phys. 49(10) (2011) 691-707.

DOI: 10.1002/polb.22247

Google Scholar

[29] Y. Lu, Y. Li, S. Zhang, G. Xu, K. Fu, H. Lee, X. Zhang, Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process, Eur. Polym. J. 49(12) (2013) 3834-3845.

DOI: 10.1016/j.eurpolymj.2013.09.017

Google Scholar

[30] S.L. Shenoy, W.D. Bates, H.L. Frisch, G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit, Polymer 46(10) (2005) 3372-3384.

DOI: 10.1016/j.polymer.2005.03.011

Google Scholar

[31] H. Mondesert, Anisotropic PCL electrospun scaffolds for soft tissue engineering: Elaboration, morphological and mechanical properties, Université Grenoble Alpes [2020-....], 2020.

Google Scholar

[32] C. Wang, C.-Y. Fang, C.-Y. Wang, Electrospun poly (butylene terephthalate) fibers: Entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene, Polymer 72 (2015) 21-29.

DOI: 10.1016/j.polymer.2015.07.001

Google Scholar

[33] N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol Adv 28(3) (2010) 325-47.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar