[1]
Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, Developments of Advanced Electrospinning Techniques: A Critical Review, Advanced Materials Technologies 6(11) (2021).
DOI: 10.1002/admt.202100410
Google Scholar
[2]
C. Bavatharani, E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, K.M. Alsheetan, M.m. Al-Anazy, D. Ragupathy, Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review, Synthetic Metals 271 (2021).
DOI: 10.1016/j.synthmet.2020.116609
Google Scholar
[3]
T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, Electrospinning of nanofibers, Journal of Applied Polymer Science 96(2) (2005) 557-569.
DOI: 10.1002/app.21481
Google Scholar
[4]
Liu, Luo, Kuang, Wan, Liang, Jiang, Cong, He, Analysis and optimization of electrospinning parameters for fabricating thermoplastic polyurethanes (TPU) nanofibers by response surface methodology, Express Polym. Lett. 18 (2024) 807-818.
DOI: 10.3144/expresspolymlett.2024.60
Google Scholar
[5]
C. Huang, N.L. Thomas, Fabrication of porous fibers via electrospinning: strategies and applications, Polymer Reviews 60(4) (2019) 595-647.
DOI: 10.1080/15583724.2019.1688830
Google Scholar
[6]
J.M. Ameer, A.K. Pr, N. Kasoju, Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering, J Funct Biomater 10(3) (2019).
DOI: 10.3390/jfb10030030
Google Scholar
[7]
J.-W. Liang, G. Prasad, S.-C. Wang, J.-L. Wu, S.-G. Lu, Enhancement of the Oil Absorption Capacity of Poly(Lactic Acid) Nano Porous Fibrous Membranes Derived via a Facile Electrospinning Method, Applied Sciences 9(5) (2019).
DOI: 10.3390/app9051014
Google Scholar
[8]
H.J. Kim, H.R. Pant, N.J. Choi, C.S. Kim, Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air, Chemical Engineering Journal 230 (2013) 244-250.
DOI: 10.1016/j.cej.2013.06.090
Google Scholar
[9]
A. Mamun, T. Blachowicz, L. Sabantina, Electrospun Nanofiber Mats for Filtering Applications-Technology, Structure and Materials, Polymers (Basel) 13(9) (2021).
DOI: 10.3390/polym13091368
Google Scholar
[10]
T. Lu, J. Cui, Q. Qu, Y. Wang, J. Zhang, R. Xiong, W. Ma, C. Huang, Multistructured Electrospun Nanofibers for Air Filtration: A Review, ACS Appl Mater Interfaces 13(20) (2021) 23293-23313.
DOI: 10.1021/acsami.1c06520
Google Scholar
[11]
M. Cao, F. Gu, C. Rao, J. Fu, P. Zhao, Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5, Sci Total Environ 666 (2019) 1011-1021.
DOI: 10.1016/j.scitotenv.2019.02.207
Google Scholar
[12]
X. Liu, D. Jiang, Y. Qin, Z. Zhang, M. Yuan, ZnO-PLLA/PLLA Preparation and Application in Air Filtration by Electrospinning Technology, Polymers (Basel) 15(8) (2023).
DOI: 10.3390/polym15081906
Google Scholar
[13]
K. Chen, W. Chou, L. Liu, Y. Cui, P. Xue, M. Jia, Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview, Sensors (Basel) 19(17) (2019).
DOI: 10.3390/s19173676
Google Scholar
[14]
A. Veerabhadraiah, S. Ramakrishna, G. Angadi, M. Venkatram, V. Kanivebagilu Ananthapadmanabha, N.M. Hebbale NarayanaRao, K. Munishamaiah, Development of polyvinyl acetate thin films by electrospinning for sensor applications, Applied Nanoscience 7(7) (2017) 355-363.
DOI: 10.1007/s13204-017-0576-9
Google Scholar
[15]
Y. Du, X. Zhang, P. Liu, D.G. Yu, R. Ge, Electrospun nanofiber-based glucose sensors for glucose detection, Front Chem 10 (2022) 944428.
DOI: 10.3389/fchem.2022.944428
Google Scholar
[16]
J. Song, X. Lin, L.Y. Ee, S.F.Y. Li, M. Huang, A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing, Adv Fiber Mater 5(2) (2023) 429-460.
DOI: 10.1007/s42765-022-00237-5
Google Scholar
[17]
A.D. Juncos Bombin, N.J. Dunne, H.O. McCarthy, Electrospinning of natural polymers for the production of nanofibres for wound healing applications, Mater Sci Eng C Mater Biol Appl 114 (2020) 110994.
DOI: 10.1016/j.msec.2020.110994
Google Scholar
[18]
Y. Liu, C. Li, Z. Feng, B. Han, D.G. Yu, K. Wang, Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing, Biomolecules 12(12) (2022).
DOI: 10.3390/biom12121727
Google Scholar
[19]
K. Ghosal, R. Augustine, A. Zaszczynska, M. Barman, A. Jain, A. Hasan, N. Kalarikkal, P. Sajkiewicz, S. Thomas, Novel drug delivery systems based on triaxial electrospinning based nanofibers, Reactive and Functional Polymers 163 (2021).
DOI: 10.1016/j.reactfunctpolym.2021.104895
Google Scholar
[20]
B. Sierakowska, P. Radwan, Janus, Galek, Łysiak, Tupaj, Bogdał, Preparation and characterization of novel nanofibrous composites prepared by electrospinning as potential nerve guidance conduits (NGCs), Express Polym. Lett. 18 (2024) 819-834.
DOI: 10.3144/expresspolymlett.2024.61
Google Scholar
[21]
C. Wang, H.S. Chien, C.H. Hsu, Y.C. Wang, C.T. Wang, H.A. Lu, Electrospinning of polyacrylonitrile solutions at elevated temperatures, Macromolecules 40(22) (2007) 7973-7983.
DOI: 10.1021/ma070508n
Google Scholar
[22]
F.L. Huang, Q.F. Wei, J.X. Wang, Y.B. Cai, Y.B. Huang, Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning, E-Polymers (2008).
DOI: 10.1515/epoly.2008.8.1.1758
Google Scholar
[23]
S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagström, P. Westbroek, K. De Clerck, The effect of temperature and humidity on electrospinning, Journal of Materials Science 44(5) (2009) 1357-1362.
DOI: 10.1007/s10853-008-3010-6
Google Scholar
[24]
N. Angel, L. Guo, F. Yan, H. Wang, L. Kong, Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology, Journal of Agriculture and Food Research 2 (2020).
DOI: 10.1016/j.jafr.2019.100015
Google Scholar
[25]
B.A. Chinnappan, M. Krishnaswamy, H. Xu, M.E. Hoque, Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters, Polymers (Basel) 14(18) (2022).
DOI: 10.3390/polym14183719
Google Scholar
[26]
P. Sanchez-Cid, J.F. Rubio-Valle, M. Jimenez-Rosado, V. Perez-Puyana, A. Romero, Effect of Solution Properties in the Development of Cellulose Derivative Nanostructures Processed via Electrospinning, Polymers (Basel) 14(4) (2022).
DOI: 10.3390/polym14040665
Google Scholar
[27]
Rabello, Alvares, Ribeiro, Jardim, Thiré, Correlation between solution relative viscosity and the microstructural properties of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) – PHBV solution blow spun mats, Express Polym. Lett. 17 (2023) 1239-1256.
DOI: 10.3144/expresspolymlett.2023.94
Google Scholar
[28]
A. Arinstein, E. Zussman, Electrospun polymer nanofibers: mechanical and thermodynamic perspectives, J. Polym. Sci., Part B: Polym. Phys. 49(10) (2011) 691-707.
DOI: 10.1002/polb.22247
Google Scholar
[29]
Y. Lu, Y. Li, S. Zhang, G. Xu, K. Fu, H. Lee, X. Zhang, Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process, Eur. Polym. J. 49(12) (2013) 3834-3845.
DOI: 10.1016/j.eurpolymj.2013.09.017
Google Scholar
[30]
S.L. Shenoy, W.D. Bates, H.L. Frisch, G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit, Polymer 46(10) (2005) 3372-3384.
DOI: 10.1016/j.polymer.2005.03.011
Google Scholar
[31]
H. Mondesert, Anisotropic PCL electrospun scaffolds for soft tissue engineering: Elaboration, morphological and mechanical properties, Université Grenoble Alpes [2020-....], 2020.
Google Scholar
[32]
C. Wang, C.-Y. Fang, C.-Y. Wang, Electrospun poly (butylene terephthalate) fibers: Entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene, Polymer 72 (2015) 21-29.
DOI: 10.1016/j.polymer.2015.07.001
Google Scholar
[33]
N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol Adv 28(3) (2010) 325-47.
DOI: 10.1016/j.biotechadv.2010.01.004
Google Scholar