[1]
W. L. de los Santos, F. P. Lansigan, and J. Hansen, "Linking Corn Production, Climate Information and Farm-Level Decision-Making: A Case Study in Isabela, Philippines BT - Climate Prediction and Agriculture: Advances and Challenges," M. V. K. Sivakumar and J. Hansen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, p.157–164.
DOI: 10.1007/978-3-540-44650-7_16
Google Scholar
[2]
H. Enawgaw, T. Tesfaye, K. T. Yilma, and D. Y. Limeneh, "Multiple Utilization Ways of Corn By-Products for Biomaterial Production with Bio-Refinery Concept; a Review," Mater. Circ. Econ., vol. 5, no. 1, p.7, 2023.
DOI: 10.1007/s42824-023-00078-6
Google Scholar
[3]
Y. Edanol, K. Usman, S. Buenviaje, M. Mantua, and L. Payawan, "Utilizing silica from rice hull for the hydrothermal synthesis of zeolite Y," KIMIKA, vol. 29, no. 1, p.17–21, 2018.
DOI: 10.26534/kimika.v29i1.17-21
Google Scholar
[4]
C. A. de C. Mendes, N. M. S. Ferreira, C. R. G. Furtado, and A. M. F. de Sousa, "Isolation and characterization of nanocrystalline cellulose from corn husk," Mater. Lett., vol. 148, p.26–29, 2015.
DOI: 10.1016/j.matlet.2015.02.047
Google Scholar
[5]
A. M. Youssef, A. El-Gendy, and S. Kamel, "Evaluation of corn husk fibers reinforced recycled low density polyethylene composites," Mater. Chem. Phys., vol. 152, p.26–33, 2015.
DOI: 10.1016/j.matchemphys.2014.12.004
Google Scholar
[6]
M. Gandhi et al., "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, vol. 12, no. 22. 2020.
DOI: 10.3390/su12229481
Google Scholar
[7]
S. B. Şentürk, D. Kahraman, C. Alkan, and İ. Gökçe, "Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage," Carbohydr. Polym., vol. 84, no. 1, p.141–144, 2011.
DOI: 10.1016/j.carbpol.2010.11.015
Google Scholar
[8]
S. Jia, Y. Zhu, Z. Wang, L. Chen, and L. Fu, "Improvement of shape stability and thermal properties of PCM using polyethylene glycol (PEG)/sisal fiber cellulose (SFC)/graphene oxide (GO)," Fibers Polym., vol. 18, no. 6, p.1171–1179, 2017.
DOI: 10.1007/s12221-017-7093-z
Google Scholar
[9]
N. H. Sari, I. N. G. Wardana, Y. S. Irawan, and E. Siswanto, "The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber," Orient. J. Chem., vol. 33, no. 6, p.3037–3042, 2017.
DOI: 10.13005/ojc/330642
Google Scholar
[10]
A. Oushabi, S. Sair, F. Oudrhiri Hassani, Y. Abboud, O. Tanane, and A. El Bouari, "The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite," South African J. Chem. Eng., vol. 23, p.116–123, 2017.
DOI: 10.1016/j.sajce.2017.04.005
Google Scholar
[11]
W. Wang, M. Xu, J. Lou, and A. Dong, "Changes in physicomechanical properties and structures of jute fibers after tetraacetylethylenediamine activated hydrogen peroxide treatment," J. Mater. Res. Technol., vol. 9, no. 6, p.15412–15420, 2020.
DOI: 10.1016/j.jmrt.2020.10.096
Google Scholar
[12]
H. A. Silvério, W. P. Flauzino Neto, N. O. Dantas, and D. Pasquini, "Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites," Ind. Crops Prod., vol. 44, p.427–436, 2013.
DOI: 10.1016/j.indcrop.2012.10.014
Google Scholar
[13]
C. Miao and W. Y. Hamad, "Cellulose reinforced polymer composites and nanocomposites: a critical review," Cellulose, vol. 20, no. 5, p.2221–2262, 2013.
DOI: 10.1007/s10570-013-0007-3
Google Scholar
[14]
Q.-H. Zhou, M. Li, P. Yang, and Y. Gu, "Effect of Hydrogen Bonds on Structures and Glass Transition Temperatures of Maleimide–Isobutene Alternating Copolymers: Molecular Dynamics Simulation Study," Macromol. Theory Simulations, vol. 22, no. 2, p.107–114, Feb. 2013.
DOI: 10.1002/mats.201200057
Google Scholar
[15]
N. H. Sari and S. Suteja, "Corn husk fibers reinforced polyester composites: tensile strength properties, water absorption behavior, and morphology," in IOP conference series: materials science and engineering, 2020, vol. 722, no. 1, p.12035.
DOI: 10.1088/1757-899x/722/1/012035
Google Scholar
[16]
D. Trache et al., "Nanocellulose: From Fundamentals to Advanced Applications," Front. Chem., vol. 8, 2020, [Online]. Available: https://www.frontiersin.org/journals/chemistry/ articles/.
DOI: 10.3389/fchem.2020.00392
Google Scholar