[1]
N. L. Sukiman, S. A. Alias, and M. S. Risby, Durability and corrosion of aluminium and its alloys: overview, property space, techniques and developments, in: Aluminium Alloys: Trends in Fabrication and Applications, vol. 5, 2012, p.47–97.
DOI: 10.5772/53752
Google Scholar
[2]
W. J. Fullen and J. Deheck, Aluminum Surface Finishing Corrosion Causes and Troubleshooting, NASF Surface Technology White Papers, vol. 79, 2014, p.1–15.
Google Scholar
[3]
P. M. Natishan and W. E. O'Grady, Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review, J. Electrochem. Soc. 161 (2014) 421–427.
DOI: 10.1149/2.1011409jes
Google Scholar
[4]
K. Nişancioĝlu, Corrosion and protection of aluminum alloys in seawater, in: European Federation of Corrosion (EFC) Series, vol. 1, Woodhead Publishing, 2007, p.145–155.
DOI: 10.1533/9781845693084.4.145
Google Scholar
[5]
A. M. Abdel-Karim and A. M. El-Shamy, A review on green corrosion inhibitors for protection of archeological metal artifacts, J. Bio- and Tribo-Corrosion 8 (2022) 35.
DOI: 10.1007/s40735-022-00636-6
Google Scholar
[6]
M. Chigondo and F. Chigondo, Recent natural corrosion inhibitors for mild steel: an overview, J. Chem. 2016 (2016) 1–5.
DOI: 10.1155/2016/6208937
Google Scholar
[7]
M. A. Jafar Mazumder, A review of green scale inhibitors: Process, types, mechanism and properties, Coatings 10 (2020) 928.
DOI: 10.3390/coatings10100928
Google Scholar
[8]
H. Ali, E. Khan, and I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J. Chem. 2019 (2019) 6730305.
DOI: 10.1155/2019/6730305
Google Scholar
[9]
G. Wu, H. Kang, X. Zhang, H. Shao, L. Chu, and C. Ruan, A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities, J. Hazard. Mater. 174 (2010) 1–8.
DOI: 10.1016/j.jhazmat.2009.09.113
Google Scholar
[10]
P. Aris, Y. Wei, M. Mohamadzadeh, and X. Xia, Griseofulvin: an updated overview of old and current knowledge, Molecules 27 (2022) 7034.
DOI: 10.3390/molecules27207034
Google Scholar
[11]
R. Jumiati, B. Chandra, and D. R. Asra, Drug Discovery of Griseofulvin: A Review, Asian J. Pharm. Res. Dev. 9 (2021) 101–107.
DOI: 10.22270/ajprd.v9i4.993
Google Scholar
[12]
R. Solmaz and G. Kardaş, Plant Wastes as Green, Renewable and Sustainable Corrosion Inhibitors, in: Sustainable Food Waste Management: Anti-corrosion Applications, Springer, 2024, p.183–213.
DOI: 10.1007/978-981-97-1160-4_9
Google Scholar
[13]
M. Ramesh and L. Rajeshkumar, Case-studies on green corrosion inhibitors, in: Sustainable Corrosion Inhibitors, vol. 107, 2021, p.204–221.
DOI: 10.21741/9781644901496-9
Google Scholar
[14]
N. B. Iroha and N. J. Maduelosi, Corrosion inhibitive action and adsorption behaviour of Justicia secunda leaves extract as an eco-friendly inhibitor for aluminium in acidic media, Biointerface Res. Appl. Chem. 11 (2021) 13019–13030.
DOI: 10.33263/briac115.1301913030
Google Scholar
[15]
J. Patel and D. D. Patel, Corrosion Inhibition by Musa paradisiaca Peel Extract for SS 304 in 1 M Hydrochloric Acid Solution, Indian J. Sci. Technol. 17 (2024) 1854–1859.
DOI: 10.17485/ijst/v17i18.570
Google Scholar
[16]
N. R. Rosli, S. M. Yusuf, A. Sauki, and W. M. R. W. Razali, Musa sapientum (Banana) peels as green corrosion inhibitor for mild steel, Key Eng. Mater. 797 (2019) 230–239.
DOI: 10.4028/www.scientific.net/kem.797.230
Google Scholar
[17]
E.U. Jerome, A. Authur, E. O. Benson, and A. J. Vitus, Corrosion inhibition of mild steel in 1 M HCl using unripe plantain peel extracts, Int. J. Sci. Technoledge 3 (2015) 6.
Google Scholar
[18]
A.O. Derek, O. S. I. Fayomi, and J. O. Atiba, Mechanical and Structural Investigation of Zn-MnO2 Coating on Mild Steel, Solid State Phenom. 365 (2024) 21–32.
DOI: 10.4028/p-d7rotd
Google Scholar
[19]
A. Borode, N. A. Ahmed, and P. A. Olubambi, Effects of Surfactants on the Corrosion Behavior of Aluminum Alloy in Graphene Nanofluid, Solid State Phenom. 355 (2024) 35–48.
DOI: 10.4028/p-7hmnpl
Google Scholar
[20]
J. O. Atiba and O. S. I. Fayomi, Corrosion Resistance and Inhibition Behavior of AA6063 in Acidic Chloride Medium: A Study Using Amoxicillin and Griseofulvin, Chem. Data Collect. 1 (2024) 101173.
DOI: 10.1016/j.cdc.2024.101173
Google Scholar
[21]
O.G. Omoegun, O.S.I. Fayomi, and J.O. Atiba, Investigation of the corrosive behavior and adsorption parameters of copper in a cowbone ash inhibited alkaline environment, J. Bio- and Tribo-Corrosion 9 (2023) 75.
DOI: 10.1007/s40735-023-00794-1
Google Scholar
[22]
O.S.I. Fayomi, J.O. Atiba, and K. T. Dauda, Electrochemistry and inhibitory evaluation of Musa paradisiaca particulates on AA6063 alloy for improved service life, Hybrid Adv. 6 (2024) 100234.
DOI: 10.1016/j.hybadv.2024.100234
Google Scholar
[23]
O. G. Omoegun, O. S. I. Fayomi, and J. O. Atiba, Investigation of the Corrosive Behavior and Adsorption Parameters of Copper in a Cowbone Ash Inhibited Alkaline Environment, J. Bio- and Tribo-Corrosion 9 (2023) 4.
DOI: 10.1007/s40735-023-00794-1
Google Scholar
[24]
S.O. Okuma, E. O. Ogagavwodia, V. E. Ajokperiniovo, and M. Obaseki, Predictive Modeling and Adsorption Behavior, Kinetics, and Thermodynamic Studies of Anthocleista Grandiflora Leaf Extract for Corrosion Inhibition of Carbon Steel in Seawater, Solid State Phenom. 365 (2024) 33–52.
DOI: 10.4028/p-modg0l
Google Scholar
[25]
R.S.A. Hameed, E.A.I.H.I. Al, and S. Mohamed, Expired Indomethacin Therapeutics as Corrosion Inhibitors for Carbon Steel in 1.0 M Hydrochloric Acid Media, 2020, p.1–10.
Google Scholar
[26]
P. Singh, D. S. Chauhan, K. Srivastava, V. Srivastava, and M. A. Quraishi, Expired atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Ind. Chem. 8 (2017) 363–372.
DOI: 10.1007/s40090-017-0120-5
Google Scholar
[27]
K. A. Alamry, A. Khan, J. Aslam, M. A. Hussein, and R. Aslam, Corrosion inhibition of mild steel in hydrochloric acid solution by the expired Ampicillin drug, Sci. Rep. 13 (2023) 6724.
DOI: 10.1038/s41598-023-33519-y
Google Scholar
[28]
G. Palumbo, K. Berent, E. Proniewicz, and J. Banaś, Guar gum as an eco-friendly corrosion inhibitor for pure aluminium in 1 M HCl solution, Materials 12 (2019) 2620.
DOI: 10.3390/ma12162620
Google Scholar
[29]
B.P. Charitha and P. Rao, Starch as an ecofriendly green inhibitor for corrosion control of 6061-Al alloy, J. Mater. Environ. Sci. 8 (2017) 78–89.
Google Scholar
[30]
C. Kuila, A. Maji, U. Phadikar, P. K. Mallisetty, N. C. Murmu, and T. Kuila, Alkali-assisted functionalization of hexagonal boron nitride reinforced epoxy composite to improve the thermomechanical and anticorrosion performance for advanced thermal management, Polym. Compos. 45 (2024) 5643–5655.
DOI: 10.1002/pc.28154
Google Scholar
[31]
M. Prabakaran, S.-H. Kim, A. Sasireka, K. Kalaiselvi, and I.-M. Chung, Polygonatum odaratum extract as an eco-friendly inhibitor for aluminum corrosion in acidic medium, J. Adhes. Sci. Technol. 32 (2018) 2054–2069.
DOI: 10.1080/01694243.2018.1462947
Google Scholar
[32]
K.-H. Goh, T.-T. Lim, and P.-C. Chui, Evaluation of the effect of dosage, pH and contact time on high-dose phosphate inhibition for copper corrosion control using response surface methodology (RSM), Corros. Sci. 50 (2008) 918–927.
DOI: 10.1016/j.corsci.2007.12.008
Google Scholar