[1]
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26
DOI: 10.1016/j.ijpe.2019.01.004
Google Scholar
[2]
Adebayo, L. L., Soleimani, H., Yahya, N., Abbas, Z., Wahaab, F. A., Ayinla, R. T., & Ali, H. (2020). Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceramics International, 46(2), 1249–1268
DOI: 10.1016/j.ceramint.2019.09.209
Google Scholar
[3]
Rahmawati, R., Melati, A., Taufiq, A., Sunaryono, Diantoro, M., Yuliarto, B., Suyatman, S., Nugraha, N., & Kurniadi, D. (2017). Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route. IOP Conference Series: Materials Science and Engineering, 202, 012013
DOI: 10.1088/1757-899X/202/1/012013
Google Scholar
[4]
Xia, R., Yin, Y., Zeng, M., Dong, H., Yang, H., Zeng, X., Tang, W., & Yu, R. (2016). High-Frequency Absorption of the Hybrid Composites with Spindle-like Fe3O4 Nanoparticles and Multiwalled Carbon Nanotubes. Nano, 11(09), 1650097
DOI: 10.1142/S1793292016500971
Google Scholar
[5]
Ahmad Taufiq, ST. Ulfawanti Intan Subadra, Nurul Hidayat, Sunaryono, Arif Hidayat, Erfan Handoko, Munasir, Mudrik Alaydrus, and Leamthong Chuenchom, "Eco-Friendly Fabrication of Fe3O4/MWCNT/ZnO Nanocomposites from Natural Sand for Radar Absorbing Materials", Int. J. Nanosci. Nanotechnol., Vol. 17, No. 1, March 2021, pp.41-53.
DOI: 10.1016/j.jallcom.2023.172590
Google Scholar
[6]
Mingdong, C., Huangzhong, Y., Xiaohua, J., Yigang, L., "Optimization on Microwave Absorbing Properties of Carbon Nanotubes and Magnetic Oxide Composite Materials", Applied Surface Science, 434 (2018) 1321– 1326.
DOI: 10.1016/j.apsusc.2017.11.107
Google Scholar
[7]
Panwar, R., Puthucheri, S., Agarwala, V., & Singh, D. (2014). Effect of particle size on radar wave absorption of fractal frequency selective surface loaded multilayered structures. 2014 IEEE International Microwave and RF Conference (IMaRC), 186–189
DOI: 10.1109/IMaRC.2014.7038984
Google Scholar
[8]
Yahya, M. M. A., Subadra, ST. U. I., Saputro, R. E., Taufiq, A., Yogihati, C. I., Sunaryono, Handoko, E., Alaydrus, M., Amrillah, T., & Samian. (2023). Investigation of the optical, magnetic, and radar absorption characteristics of CoxFe3-xO4/ZnO/graphite nanocomposites. Materials Science in Semiconductor Processing, 165, 107683
DOI: 10.1016/j.mssp.2023.107683
Google Scholar
[9]
Lalan, V., & Ganesanpotti, S. (2020). Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites. Journal of Electronic Materials, 49(3), 1666–1676
DOI: 10.1007/s11664-019-07635-3
Google Scholar
[10]
Y. Wang et al., Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber, J. Alloy. Compd. 785, 765 (2019).
DOI: 10.1016/j.jallcom.2019.01.271
Google Scholar
[11]
N. Zhang et al., Novel nanocomposites of cobalt ferrite covalently-grafted on graphene by amide bond as superior electromagnetic wave absorber, J Colloid Interface Sci. 540, 218 (2019).
DOI: 10.1016/j.jcis.2019.01.025
Google Scholar
[12]
M. Dalal et al., Studies of magnetic, Mossbauer spectroscopy, microwave absorption and € hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes, J. Magn. Magn. Mater. 460, 12 (2018).
DOI: 10.1016/j.jmmm.2018.03.048
Google Scholar
[13]
M. Rostami, and M. H. M. Ara, The dielectric, magnetic and microwave absorption properties of Cu-substituted Mg-Ni spinel ferrite-MWCNT nanocomposites, Ceram. Inter. 45 (6), 7606 (2019).
DOI: 10.1016/j.ceramint.2019.01.056
Google Scholar
[14]
I. Abdalla et al., Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption, Sci. Rep. 8 (1), 12402 (2018). DOI: 10.1038/s41598-018- 30871-2.
DOI: 10.1038/s41598-018-30871-2
Google Scholar
[15]
Y. Feng et al., The influence of carbon materials on the absorption performance of polymer-derived SiCN ceramics in X-band, Ceram. Inter. 44 (13), 15686 (2018). DOI: 10.1016/ j.ceramint.2018.05.240.
DOI: 10.1016/j.ceramint.2018.05.240
Google Scholar
[16]
W. Li et al., Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal, Results Phys. 12, 278 (2019).
DOI: 10.1016/j.rinp.2018.11.036
Google Scholar
[17]
L. Gao et al., Dielectric and microwave absorption properties of KNN/Al2O3 composite ceramics, Ceram. Inter. 43 (15), 12731 (2017).
DOI: 10.1016/j.ceramint.2017.06.158
Google Scholar
[18]
W. Hong et al., In situ growth of one-dimensional nanowires on porous PDC-SiC/Si3N4 ceramics with excellent microwave absorption properties, Ceram. Inter. 43 (16), 14301 (2017).
DOI: 10.1016/j.ceramint.2017.07.182
Google Scholar
[19]
Q. Wu et al., Microwave absorption and mechanical properties of cross-scale SiC composites, Compos. Part B 155, 83 (2018).
DOI: 10.1016/j.compositesb.2018.08.020
Google Scholar
[20]
O. Khani et al., The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers, J. Magn. Magn. Mater. 428, 28 (2017).
DOI: 10.1016/j.jmmm.2016.12.010
Google Scholar
[21]
19. Y. Xu et al., A wide frequency absorbing material added CIPs using the fuse deposition modeling, J. Alloys Compd. 704, 593 (2017).
DOI: 10.1016/j.jallcom.2017.02.068
Google Scholar
[22]
X. Weng et al., One-pot preparation of reduced graphene oxide/carbonyl iron/polyvinyl pyrrolidone ternary nanocomposite and its synergistic microwave absorbing properties, Mater. Lett 188, 280 (2017).
DOI: 10.1016/j.matlet.2016.10.111
Google Scholar
[23]
S. Yun et al., Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption, J. Mater. Chem. C 5 (33), 8436 (2017).
DOI: 10.1039/C7TC02892J
Google Scholar
[24]
Y. Wang, W. Wang, and D. Yu, Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high microwave absorption performance, Appl. Surf. Sci. 425, 518 (2017).
DOI: 10.1016/j.apsusc.2017.07.062
Google Scholar
[25]
M. M. Ismail et al., Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite, Appl. Phys. A 124 (5), 380 (2018).
DOI: 10.1007/s00339-018-1808-x
Google Scholar
[26]
Mingdong, C., Huangzhong, Y., Xiaohua, J., Yigang, L., "Optimization on Microwave Absorbing Properties of Carbon Nanotubes and Magnetic Oxide Composite Materials", Applied Surface Science, 434 (2018) 1321– 1326.
DOI: 10.1016/j.apsusc.2017.11.107
Google Scholar
[27]
Wei, S., Yan, R., Shi, B., Chen, X., "Characterization of Flexible Radar-Absorbing Materials based on Ferromagnetic Nickel Micron-Fibers", Journal of Industrial Textiles, 49 (2018) 58–70.
DOI: 10.1177/1528083718772304
Google Scholar
[28]
Yalçın, O., Bayrakdar, H., Özüm, S., "Spin-flop Transition, Magnetic and Microwave Absorption Properties of αFe2O4 Spinel Type Ferrite Nanoparticles", Journal of Magnetism and Magnetic Materials, 343 (2013) 157–62.
DOI: 10.1016/j.jmmm.2013.05.009
Google Scholar
[29]
Mu Y, Ma Z, Liang H, Zhang L, Wu H. Ferrite-based composites and morphologycontrolled absorbers. Rare Metals 2022;41:2943–70.
DOI: 10.1007/s12598-022-02045-7
Google Scholar
[30]
He J, Gao S, Zhang Y, Zhang X, Li H. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J Mater Sci Technol 2022;104:98–108.
DOI: 10.1016/j.jmst.2021.06.052
Google Scholar
[31]
Chang Q, Liang H, Shi B, Wu H. Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 2022;25: 103925.
DOI: 10.1016/j.isci.2022.103925
Google Scholar
[32]
Li N, Huang G, Li Y, Xiao H, Feng Q, Hu N, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 2017;9:2973–83.
DOI: 10.1021/acsami.6b13142
Google Scholar
[33]
Zhao H, Jin C, Lu P, Xiao Z, Cheng Y. Anchoring well-dispersed magnetic nanoparticles on biomass-derived 2D porous carbon nanosheets for lightweight and efficient microwave absorption. Compos Part A Appl Sci Manuf 2022;154: 106773.
DOI: 10.1016/j.compositesa.2021.106773
Google Scholar
[34]
Wang, X., Xing, X., Zhu, H., Li, J., & Liu, T. (2023). State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective. Advances in Colloid and Interface Science, 318, 102960
DOI: 10.1016/j.cis.2023.102960
Google Scholar
[35]
Odom, T. W., Huang, J.-L., Kim, P., & Lieber, C. M. (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391(6662), 62–64
DOI: 10.1038/34145
Google Scholar
[36]
Thomassin, J.-M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74(7), 211–232
DOI: 10.1016/j.mser.2013.06.001
Google Scholar
[37]
ZabihiSahebi, A., Koushkbaghi, S., Pishnamazi, M., Askari, A., Khosravi, R., & Irani, M. (2019). Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. International Journal of Biological Macromolecules, 140, 1296–1304
DOI: 10.1016/j.ijbiomac.2019.08.214
Google Scholar
[38]
Chen, S., Kuo, W., & Yang, R. (2019). Microwave absorbing properties of a radar absorbing structure composed of carbon nanotube papers/glass fabric composites. International Journal of Applied Ceramic Technology, 16(5), 2065–2072
DOI: 10.1111/ijac.13192
Google Scholar
[39]
Li, Q., Xue, Q., Zheng, Q., Hao, L., & Gao, X. (2008). Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Materials Letters, 62(26), 4229–4231
DOI: 10.1016/j.matlet.2008.06.047
Google Scholar
[40]
Hou, Z., Liu, C., Gong, J., Wu, J., Sun, S., Zhang, M., & Sun, X. (2022). Micro-Structural Design of CoFe2O4/SWCNTs Composites for Enhanced Electromagnetic Properties. Coatings, 12(10), 1532
DOI: 10.3390/coatings12101532
Google Scholar
[41]
Wang, L., & Dang, Z.-M. (2005). Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 87(4)
DOI: 10.1063/1.1996842
Google Scholar
[42]
Kuchi, R., Nguyen, H. M., Dongquoc, V., Van, P. C., Ahn, H., Duong Viet, D., Kim, D., Kim, D., & Jeong, J.-R. (2021). Optimization of FeNi/SWCNT composites by a simple co-arc discharge process to improve microwave absorption performance. Journal of Alloys and Compounds, 852, 156712
DOI: 10.1016/j.jallcom.2020.156712
Google Scholar
[43]
Lv, H., Ji, G., Zhang, H., & Du, Y. (2015). Facile synthesis of a CNT@Fe@SiO 2 ternary composite with enhanced microwave absorption performance. RSC Advances, 5(94), 76836–76843
DOI: 10.1039/C5RA11162E
Google Scholar
[44]
Xiang, C., Pan, Y., Liu, X., Sun, X., Shi, X., & Guo, J. (2005). Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Applied Physics Letters, 87(12)
DOI: 10.1063/1.2051806
Google Scholar
[45]
Singh, S. K., Akhtar, M. J., & Kar, K. K. (2019). Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at X-band frequencies. Composites Part B: Engineering, 167, 135–146
DOI: 10.1016/j.compositesb.2018.12.012
Google Scholar
[46]
S.K. Singh, M.J. Akhtar, K.K. Kar, Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at Xband frequencies, Compos. Part B: Eng. 167 (2019) 135–146, https://doi.org/.
DOI: 10.1016/j.compositesb.2018.12.012
Google Scholar
[47]
Qoidah, S. N., Ulfawanti Intan Subadra, ST., Taufiq, A., Mufti, N., Sunaryono, S., Hidayat, N., Handoko, E., Alaydrus, M., & Amrillah, T. (2024). Fe3O4/MWCNT/TiO2 nanocomposites as excellent microwave absorber material. Journal of Alloys and Compounds, 970, 172590
DOI: 10.1016/j.jallcom.2023.172590
Google Scholar
[48]
R. Nabizadeh Nodehid, K. Yaghmaeiand, J. Jaafari, M. Hazrati Niari, A. Azari, E. Ahmadid, N. Shariatifar, V.K. Gupta, S. Agarwal, A.K. Bharti, Catalytic decomposition of 2-chlorophenol using an ultrasonicassisted Fe3O4–TiO2@ MWCNT system: influence factors, pathway and mechanism study, J. Colloid Interface Sci. (2017) 3–44.
DOI: 10.1016/j.jcis.2017.10.015
Google Scholar
[49]
John Prabhahar, M., S, J. J., & R, A. P. v. (2020). Role of Magnetite (Fe 3 O 4 )-Titania (TiO 2 ) hybrid particle on mechanical, thermal and microwave attenuation behaviour of flexible natural rubber composite in X and Ku band frequencies. Materials Research Express, 7(1), 016106
DOI: 10.1088/2053-1591/ab6389
Google Scholar
[50]
Jain, K., Pathak, S., Kumar, P., Singh, A., & Pant, R. P. (2019). Dynamic magneto-optical inversion in magnetic fluid using NanoMOKE. Journal of Magnetism and Magnetic Materials, 475, 782–786
DOI: 10.1016/j.jmmm.2018.12.039
Google Scholar
[51]
Mo, Z., Yang, R., Lu, D., Yang, L., Hu, Q., Li, H., Zhu, H., Tang, Z., & Gui, X. (2019). Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon, 144, 433–439
DOI: 10.1016/j.carbon.2018.12.064
Google Scholar
[52]
Li N, Huang G, Li Y, Xiao H, Feng Q, Hu N, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 2017;9:2973–83
DOI: 10.1021/acsami.6b13142
Google Scholar
[53]
Liu, S., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Advances in Colloid and Interface Science, 281, 102165
DOI: 10.1016/j.cis.2020.102165
Google Scholar
[54]
Judith Vijaya, J., Jayaprakash, N., Kombaiah, K., Kaviyarasu, K., John Kennedy, L., Jothi Ramalingam, R., Al-Lohedan, H. A., V.M., M.-A., & Maaza, M. (2017). Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 177, 62–68
DOI: 10.1016/j.jphotobiol.2017.10.007
Google Scholar
[55]
Suárez, J., Daboin, V., González, G., & Briceño, S. (2020). Chitosan-polyvinylpyrrolidone Co Fe3−xO4 (0.25 ≤ x ≤ 1) nanoparticles for hyperthermia applications. International Journal of Biological Macromolecules, 164, 3403–3410
DOI: 10.1016/j.ijbiomac.2020.08.043
Google Scholar
[56]
Kumar, P., Pathak, S., Singh, A., Kuldeep, Khanduri, H., Wang, X., Basheed, G. A., & Pant, R. P. (2021). Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3-xO4 mixed ferrite nanomagnetic fluids. Materials Chemistry and Physics, 265, 124476
DOI: 10.1016/j.matchemphys.2021.124476
Google Scholar
[57]
Mamun, A. al, AlSaadi, M. A., Alam, Md. Z., & Sopyan, I. (2018). Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate. Applied Nanoscience, 8(7), 1767–1779
DOI: 10.1007/s13204-018-0861-2
Google Scholar
[58]
Yuan, Y., Wei, S., Liang, Y., Wang, B., Wang, Y., Xin, W., Wang, X., & Zhang, Y. (2021). Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. Journal of Alloys and Compounds, 867, 159040
DOI: 10.1016/j.jallcom.2021.159040
Google Scholar
[59]
Yanmaz, E., Doğan, M., & Turhan, Y. (2021). Effect of sodium dodecyl sulfate on thermal properties of polyvinyl alcohol (PVA)/modified single-walled carbon nanotube (SWCNT) nanocomposites. Diamond and Related Materials, 115, 108359
DOI: 10.1016/j.diamond.2021.108359
Google Scholar
[60]
Khanmohammadi, M., Fard, H. G., Garmarudi, A. B., & Khoddami, N. (2010). Fourier transform infrared spectroscopic monitoring of sol–gel process in synthesis of PbS–TiO2 hybrid nanostructures. Thin Solid Films, 518(23), 6729–6732
DOI: 10.1016/j.tsf.2010.05.123
Google Scholar
[61]
Moya, A., Cherevan, A., Marchesan, S., Gebhardt, P., Prato, M., Eder, D., & Vilatela, J. J. (2015). Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental, 179, 574–582
DOI: 10.1016/j.apcatb.2015.05.052
Google Scholar
[62]
Hanifah, N., Subadra, ST. U. I., Hidayat, N., Sunaryono, Yogihati, C. I., Adi, W. A., Munasir, Amrillah, T., Abd Aziz, M. S., & Taufiq, A. (2024). A novel Fe3O4/ZnO/PANI/rGO nanohybrid material for radar wave absorbing. Materials Chemistry and Physics, 317, 129169
DOI: 10.1016/j.matchemphys.2024.129169
Google Scholar
[63]
P.K. Singh, S. Mukherjee, C.K. Ghosh, S. Maitra, Influence of precursor type on structural, morphological, dielectric and magnetic properties of TiO2 nanoparticles, Cerˆ amica 63 (2017) 549–556, https://doi.org/10.1590/0366- 69132017633682145.
DOI: 10.1590/0366-69132017633682145
Google Scholar
[64]
P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance, Compos. Part A: Appl. Sci. Manuf. 115 (2018) 371–382, https://doi.org/10.1016/j. compositesa.2018.10.014.
DOI: 10.1016/j.compositesa.2018.10.014
Google Scholar
[65]
Ruiz-Perez, F., López-Estrada, S. M., Tolentino-Hernández, R. V., & Caballero-Briones, F. (2022). Carbon-based radar absorbing materials: A critical review. Journal of Science: Advanced Materials and Devices, 7(3), 100454
DOI: 10.1016/j.jsamd.2022.100454
Google Scholar
[66]
Zhou, M., Yan, Q., Fu, Q., & Fu, H. (2020). Self-healable ZnO@ multiwalled carbon nanotubes (MWCNTs) /DA-PDMS nanocomposite via Diels-Alder chemistry as microwave absorber: A novel multifunctional material. Carbon, 169, 235–247
DOI: 10.1016/j.carbon.2020.07.003
Google Scholar
[67]
Manjunatha, M., Kumar, R., Anupama, A. v., Khopkar, V. B., Damle, R., Ramesh, K. P., & Sahoo, B. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8(2), 2192–2200.
DOI: 10.1016/j.jmrt.2019.01.022
Google Scholar
[68]
Kim, S., Lee, S., Zhang, Y., Park, S., & Gu, J. (2023). Carbon‐Based Radar Absorbing Materials toward Stealth Technologies. Advanced Science, 10 (32). https://doi.org/
DOI: 10.1002/advs.202303104
Google Scholar
[69]
Ruiz-Perez, F., López-Estrada, S. M., Tolentino-Hernández, R. V., & Caballero-Briones, F. (2022). Carbon-based radar absorbing materials: A critical review. Journal of Science: Advanced Materials and Devices, 7(3), 100454
DOI: 10.1016/j.jsamd.2022.100454
Google Scholar