Radar Absorbtion Performance in the Ka- Band Region of Fe3O4/SWCNT/TiO2 Nanocomposite

Article Preview

Abstract:

This research has successfully synthesized Fe3O4/SWCNT/TiO2 nanocomposite as a radar absorber for stealth technology applications in the Ka-band. The study aimed to investigate the nanocomposite's crystal structure, morphology, functional groups, magnetic properties, and radar absorption performance at a frequency Ka-Band range from 26.5 GHz to 40.0 GHz. The X-ray diffraction analysis revealed a crystalline phase of Fe3O4 with a crystallite size of 14.26 nm and two crystalline phases of TiO2 (anatase and rutile) with crystallite sizes of 5.12 nm and 27.51 nm, respectively. The scanning electron microscopy image showed SWCNT as a matrix with diameters of several nanometers and lengths of several micrometers, along with Fe3O4 and TiO2 particles as fillers with a particle size of 46.56 nm, consistent with the XRD characterization. Furthermore, the infra-red spectrum confirmed the presence of Fe3O4 through octahedral and tetrahedral Fe-O bonds. C-O, C-C, and C=O indicated the presence of SWCNT. Meanwhile, -OH bonds also validated the success of their functionalization. Ti-O and Ti-O-C bonds stated the presence of TiO2 bound to SWCNTs. The hysteresis curve exhibited superparamagnetic properties of the nanocomposite with a saturation magnetization of 9.38 emu/g. Furthermore, radar absorption measurement demonstrated that the nanocomposite absorbs radar with a maximum reflection loss of –1.51 dB at an effective frequency of 33.16 GHz, showing a potency for Fe3O4/SWCNT/TiO2 nanocomposite as radar absorber in the Ka-Band Region, inspiring potential applications in stealth technology.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

131-141

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26

DOI: 10.1016/j.ijpe.2019.01.004

Google Scholar

[2] Adebayo, L. L., Soleimani, H., Yahya, N., Abbas, Z., Wahaab, F. A., Ayinla, R. T., & Ali, H. (2020). Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceramics International, 46(2), 1249–1268

DOI: 10.1016/j.ceramint.2019.09.209

Google Scholar

[3] Rahmawati, R., Melati, A., Taufiq, A., Sunaryono, Diantoro, M., Yuliarto, B., Suyatman, S., Nugraha, N., & Kurniadi, D. (2017). Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route. IOP Conference Series: Materials Science and Engineering, 202, 012013

DOI: 10.1088/1757-899X/202/1/012013

Google Scholar

[4] Xia, R., Yin, Y., Zeng, M., Dong, H., Yang, H., Zeng, X., Tang, W., & Yu, R. (2016). High-Frequency Absorption of the Hybrid Composites with Spindle-like Fe3O4 Nanoparticles and Multiwalled Carbon Nanotubes. Nano, 11(09), 1650097

DOI: 10.1142/S1793292016500971

Google Scholar

[5] Ahmad Taufiq, ST. Ulfawanti Intan Subadra, Nurul Hidayat, Sunaryono, Arif Hidayat, Erfan Handoko, Munasir, Mudrik Alaydrus, and Leamthong Chuenchom, "Eco-Friendly Fabrication of Fe3O4/MWCNT/ZnO Nanocomposites from Natural Sand for Radar Absorbing Materials", Int. J. Nanosci. Nanotechnol., Vol. 17, No. 1, March 2021, pp.41-53.

DOI: 10.1016/j.jallcom.2023.172590

Google Scholar

[6] Mingdong, C., Huangzhong, Y., Xiaohua, J., Yigang, L., "Optimization on Microwave Absorbing Properties of Carbon Nanotubes and Magnetic Oxide Composite Materials", Applied Surface Science, 434 (2018) 1321– 1326.

DOI: 10.1016/j.apsusc.2017.11.107

Google Scholar

[7] Panwar, R., Puthucheri, S., Agarwala, V., & Singh, D. (2014). Effect of particle size on radar wave absorption of fractal frequency selective surface loaded multilayered structures. 2014 IEEE International Microwave and RF Conference (IMaRC), 186–189

DOI: 10.1109/IMaRC.2014.7038984

Google Scholar

[8] Yahya, M. M. A., Subadra, ST. U. I., Saputro, R. E., Taufiq, A., Yogihati, C. I., Sunaryono, Handoko, E., Alaydrus, M., Amrillah, T., & Samian. (2023). Investigation of the optical, magnetic, and radar absorption characteristics of CoxFe3-xO4/ZnO/graphite nanocomposites. Materials Science in Semiconductor Processing, 165, 107683

DOI: 10.1016/j.mssp.2023.107683

Google Scholar

[9] Lalan, V., & Ganesanpotti, S. (2020). Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites. Journal of Electronic Materials, 49(3), 1666–1676

DOI: 10.1007/s11664-019-07635-3

Google Scholar

[10] Y. Wang et al., Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber, J. Alloy. Compd. 785, 765 (2019).

DOI: 10.1016/j.jallcom.2019.01.271

Google Scholar

[11] N. Zhang et al., Novel nanocomposites of cobalt ferrite covalently-grafted on graphene by amide bond as superior electromagnetic wave absorber, J Colloid Interface Sci. 540, 218 (2019).

DOI: 10.1016/j.jcis.2019.01.025

Google Scholar

[12] M. Dalal et al., Studies of magnetic, Mossbauer spectroscopy, microwave absorption and € hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes, J. Magn. Magn. Mater. 460, 12 (2018).

DOI: 10.1016/j.jmmm.2018.03.048

Google Scholar

[13] M. Rostami, and M. H. M. Ara, The dielectric, magnetic and microwave absorption properties of Cu-substituted Mg-Ni spinel ferrite-MWCNT nanocomposites, Ceram. Inter. 45 (6), 7606 (2019).

DOI: 10.1016/j.ceramint.2019.01.056

Google Scholar

[14] I. Abdalla et al., Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption, Sci. Rep. 8 (1), 12402 (2018). DOI: 10.1038/s41598-018- 30871-2.

DOI: 10.1038/s41598-018-30871-2

Google Scholar

[15] Y. Feng et al., The influence of carbon materials on the absorption performance of polymer-derived SiCN ceramics in X-band, Ceram. Inter. 44 (13), 15686 (2018). DOI: 10.1016/ j.ceramint.2018.05.240.

DOI: 10.1016/j.ceramint.2018.05.240

Google Scholar

[16] W. Li et al., Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal, Results Phys. 12, 278 (2019).

DOI: 10.1016/j.rinp.2018.11.036

Google Scholar

[17] L. Gao et al., Dielectric and microwave absorption properties of KNN/Al2O3 composite ceramics, Ceram. Inter. 43 (15), 12731 (2017).

DOI: 10.1016/j.ceramint.2017.06.158

Google Scholar

[18] W. Hong et al., In situ growth of one-dimensional nanowires on porous PDC-SiC/Si3N4 ceramics with excellent microwave absorption properties, Ceram. Inter. 43 (16), 14301 (2017).

DOI: 10.1016/j.ceramint.2017.07.182

Google Scholar

[19] Q. Wu et al., Microwave absorption and mechanical properties of cross-scale SiC composites, Compos. Part B 155, 83 (2018).

DOI: 10.1016/j.compositesb.2018.08.020

Google Scholar

[20] O. Khani et al., The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers, J. Magn. Magn. Mater. 428, 28 (2017).

DOI: 10.1016/j.jmmm.2016.12.010

Google Scholar

[21] 19. Y. Xu et al., A wide frequency absorbing material added CIPs using the fuse deposition modeling, J. Alloys Compd. 704, 593 (2017).

DOI: 10.1016/j.jallcom.2017.02.068

Google Scholar

[22] X. Weng et al., One-pot preparation of reduced graphene oxide/carbonyl iron/polyvinyl pyrrolidone ternary nanocomposite and its synergistic microwave absorbing properties, Mater. Lett 188, 280 (2017).

DOI: 10.1016/j.matlet.2016.10.111

Google Scholar

[23] S. Yun et al., Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption, J. Mater. Chem. C 5 (33), 8436 (2017).

DOI: 10.1039/C7TC02892J

Google Scholar

[24] Y. Wang, W. Wang, and D. Yu, Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high microwave absorption performance, Appl. Surf. Sci. 425, 518 (2017).

DOI: 10.1016/j.apsusc.2017.07.062

Google Scholar

[25] M. M. Ismail et al., Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite, Appl. Phys. A 124 (5), 380 (2018).

DOI: 10.1007/s00339-018-1808-x

Google Scholar

[26] Mingdong, C., Huangzhong, Y., Xiaohua, J., Yigang, L., "Optimization on Microwave Absorbing Properties of Carbon Nanotubes and Magnetic Oxide Composite Materials", Applied Surface Science, 434 (2018) 1321– 1326.

DOI: 10.1016/j.apsusc.2017.11.107

Google Scholar

[27] Wei, S., Yan, R., Shi, B., Chen, X., "Characterization of Flexible Radar-Absorbing Materials based on Ferromagnetic Nickel Micron-Fibers", Journal of Industrial Textiles, 49 (2018) 58–70.

DOI: 10.1177/1528083718772304

Google Scholar

[28] Yalçın, O., Bayrakdar, H., Özüm, S., "Spin-flop Transition, Magnetic and Microwave Absorption Properties of αFe2O4 Spinel Type Ferrite Nanoparticles", Journal of Magnetism and Magnetic Materials, 343 (2013) 157–62.

DOI: 10.1016/j.jmmm.2013.05.009

Google Scholar

[29] Mu Y, Ma Z, Liang H, Zhang L, Wu H. Ferrite-based composites and morphologycontrolled absorbers. Rare Metals 2022;41:2943–70.

DOI: 10.1007/s12598-022-02045-7

Google Scholar

[30] He J, Gao S, Zhang Y, Zhang X, Li H. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J Mater Sci Technol 2022;104:98–108.

DOI: 10.1016/j.jmst.2021.06.052

Google Scholar

[31] Chang Q, Liang H, Shi B, Wu H. Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 2022;25: 103925.

DOI: 10.1016/j.isci.2022.103925

Google Scholar

[32] Li N, Huang G, Li Y, Xiao H, Feng Q, Hu N, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 2017;9:2973–83.

DOI: 10.1021/acsami.6b13142

Google Scholar

[33] Zhao H, Jin C, Lu P, Xiao Z, Cheng Y. Anchoring well-dispersed magnetic nanoparticles on biomass-derived 2D porous carbon nanosheets for lightweight and efficient microwave absorption. Compos Part A Appl Sci Manuf 2022;154: 106773.

DOI: 10.1016/j.compositesa.2021.106773

Google Scholar

[34] Wang, X., Xing, X., Zhu, H., Li, J., & Liu, T. (2023). State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective. Advances in Colloid and Interface Science, 318, 102960

DOI: 10.1016/j.cis.2023.102960

Google Scholar

[35] Odom, T. W., Huang, J.-L., Kim, P., & Lieber, C. M. (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391(6662), 62–64

DOI: 10.1038/34145

Google Scholar

[36] Thomassin, J.-M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74(7), 211–232

DOI: 10.1016/j.mser.2013.06.001

Google Scholar

[37] ZabihiSahebi, A., Koushkbaghi, S., Pishnamazi, M., Askari, A., Khosravi, R., & Irani, M. (2019). Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. International Journal of Biological Macromolecules, 140, 1296–1304

DOI: 10.1016/j.ijbiomac.2019.08.214

Google Scholar

[38] Chen, S., Kuo, W., & Yang, R. (2019). Microwave absorbing properties of a radar absorbing structure composed of carbon nanotube papers/glass fabric composites. International Journal of Applied Ceramic Technology, 16(5), 2065–2072

DOI: 10.1111/ijac.13192

Google Scholar

[39] Li, Q., Xue, Q., Zheng, Q., Hao, L., & Gao, X. (2008). Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Materials Letters, 62(26), 4229–4231

DOI: 10.1016/j.matlet.2008.06.047

Google Scholar

[40] Hou, Z., Liu, C., Gong, J., Wu, J., Sun, S., Zhang, M., & Sun, X. (2022). Micro-Structural Design of CoFe2O4/SWCNTs Composites for Enhanced Electromagnetic Properties. Coatings, 12(10), 1532

DOI: 10.3390/coatings12101532

Google Scholar

[41] Wang, L., & Dang, Z.-M. (2005). Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 87(4)

DOI: 10.1063/1.1996842

Google Scholar

[42] Kuchi, R., Nguyen, H. M., Dongquoc, V., Van, P. C., Ahn, H., Duong Viet, D., Kim, D., Kim, D., & Jeong, J.-R. (2021). Optimization of FeNi/SWCNT composites by a simple co-arc discharge process to improve microwave absorption performance. Journal of Alloys and Compounds, 852, 156712

DOI: 10.1016/j.jallcom.2020.156712

Google Scholar

[43] Lv, H., Ji, G., Zhang, H., & Du, Y. (2015). Facile synthesis of a CNT@Fe@SiO 2 ternary composite with enhanced microwave absorption performance. RSC Advances, 5(94), 76836–76843

DOI: 10.1039/C5RA11162E

Google Scholar

[44] Xiang, C., Pan, Y., Liu, X., Sun, X., Shi, X., & Guo, J. (2005). Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Applied Physics Letters, 87(12)

DOI: 10.1063/1.2051806

Google Scholar

[45] Singh, S. K., Akhtar, M. J., & Kar, K. K. (2019). Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at X-band frequencies. Composites Part B: Engineering, 167, 135–146

DOI: 10.1016/j.compositesb.2018.12.012

Google Scholar

[46] S.K. Singh, M.J. Akhtar, K.K. Kar, Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at Xband frequencies, Compos. Part B: Eng. 167 (2019) 135–146, https://doi.org/.

DOI: 10.1016/j.compositesb.2018.12.012

Google Scholar

[47] Qoidah, S. N., Ulfawanti Intan Subadra, ST., Taufiq, A., Mufti, N., Sunaryono, S., Hidayat, N., Handoko, E., Alaydrus, M., & Amrillah, T. (2024). Fe3O4/MWCNT/TiO2 nanocomposites as excellent microwave absorber material. Journal of Alloys and Compounds, 970, 172590

DOI: 10.1016/j.jallcom.2023.172590

Google Scholar

[48] R. Nabizadeh Nodehid, K. Yaghmaeiand, J. Jaafari, M. Hazrati Niari, A. Azari, E. Ahmadid, N. Shariatifar, V.K. Gupta, S. Agarwal, A.K. Bharti, Catalytic decomposition of 2-chlorophenol using an ultrasonicassisted Fe3O4–TiO2@ MWCNT system: influence factors, pathway and mechanism study, J. Colloid Interface Sci. (2017) 3–44.

DOI: 10.1016/j.jcis.2017.10.015

Google Scholar

[49] John Prabhahar, M., S, J. J., & R, A. P. v. (2020). Role of Magnetite (Fe 3 O 4 )-Titania (TiO 2 ) hybrid particle on mechanical, thermal and microwave attenuation behaviour of flexible natural rubber composite in X and Ku band frequencies. Materials Research Express, 7(1), 016106

DOI: 10.1088/2053-1591/ab6389

Google Scholar

[50] Jain, K., Pathak, S., Kumar, P., Singh, A., & Pant, R. P. (2019). Dynamic magneto-optical inversion in magnetic fluid using NanoMOKE. Journal of Magnetism and Magnetic Materials, 475, 782–786

DOI: 10.1016/j.jmmm.2018.12.039

Google Scholar

[51] Mo, Z., Yang, R., Lu, D., Yang, L., Hu, Q., Li, H., Zhu, H., Tang, Z., & Gui, X. (2019). Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon, 144, 433–439

DOI: 10.1016/j.carbon.2018.12.064

Google Scholar

[52] Li N, Huang G, Li Y, Xiao H, Feng Q, Hu N, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 2017;9:2973–83

DOI: 10.1021/acsami.6b13142

Google Scholar

[53] Liu, S., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Advances in Colloid and Interface Science, 281, 102165

DOI: 10.1016/j.cis.2020.102165

Google Scholar

[54] Judith Vijaya, J., Jayaprakash, N., Kombaiah, K., Kaviyarasu, K., John Kennedy, L., Jothi Ramalingam, R., Al-Lohedan, H. A., V.M., M.-A., & Maaza, M. (2017). Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 177, 62–68

DOI: 10.1016/j.jphotobiol.2017.10.007

Google Scholar

[55] Suárez, J., Daboin, V., González, G., & Briceño, S. (2020). Chitosan-polyvinylpyrrolidone Co Fe3−xO4 (0.25 ≤ x ≤ 1) nanoparticles for hyperthermia applications. International Journal of Biological Macromolecules, 164, 3403–3410

DOI: 10.1016/j.ijbiomac.2020.08.043

Google Scholar

[56] Kumar, P., Pathak, S., Singh, A., Kuldeep, Khanduri, H., Wang, X., Basheed, G. A., & Pant, R. P. (2021). Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3-xO4 mixed ferrite nanomagnetic fluids. Materials Chemistry and Physics, 265, 124476

DOI: 10.1016/j.matchemphys.2021.124476

Google Scholar

[57] Mamun, A. al, AlSaadi, M. A., Alam, Md. Z., & Sopyan, I. (2018). Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate. Applied Nanoscience, 8(7), 1767–1779

DOI: 10.1007/s13204-018-0861-2

Google Scholar

[58] Yuan, Y., Wei, S., Liang, Y., Wang, B., Wang, Y., Xin, W., Wang, X., & Zhang, Y. (2021). Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. Journal of Alloys and Compounds, 867, 159040

DOI: 10.1016/j.jallcom.2021.159040

Google Scholar

[59] Yanmaz, E., Doğan, M., & Turhan, Y. (2021). Effect of sodium dodecyl sulfate on thermal properties of polyvinyl alcohol (PVA)/modified single-walled carbon nanotube (SWCNT) nanocomposites. Diamond and Related Materials, 115, 108359

DOI: 10.1016/j.diamond.2021.108359

Google Scholar

[60] Khanmohammadi, M., Fard, H. G., Garmarudi, A. B., & Khoddami, N. (2010). Fourier transform infrared spectroscopic monitoring of sol–gel process in synthesis of PbS–TiO2 hybrid nanostructures. Thin Solid Films, 518(23), 6729–6732

DOI: 10.1016/j.tsf.2010.05.123

Google Scholar

[61] Moya, A., Cherevan, A., Marchesan, S., Gebhardt, P., Prato, M., Eder, D., & Vilatela, J. J. (2015). Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental, 179, 574–582

DOI: 10.1016/j.apcatb.2015.05.052

Google Scholar

[62] Hanifah, N., Subadra, ST. U. I., Hidayat, N., Sunaryono, Yogihati, C. I., Adi, W. A., Munasir, Amrillah, T., Abd Aziz, M. S., & Taufiq, A. (2024). A novel Fe3O4/ZnO/PANI/rGO nanohybrid material for radar wave absorbing. Materials Chemistry and Physics, 317, 129169

DOI: 10.1016/j.matchemphys.2024.129169

Google Scholar

[63] P.K. Singh, S. Mukherjee, C.K. Ghosh, S. Maitra, Influence of precursor type on structural, morphological, dielectric and magnetic properties of TiO2 nanoparticles, Cerˆ amica 63 (2017) 549–556, https://doi.org/10.1590/0366- 69132017633682145.

DOI: 10.1590/0366-69132017633682145

Google Scholar

[64] P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance, Compos. Part A: Appl. Sci. Manuf. 115 (2018) 371–382, https://doi.org/10.1016/j. compositesa.2018.10.014.

DOI: 10.1016/j.compositesa.2018.10.014

Google Scholar

[65] Ruiz-Perez, F., López-Estrada, S. M., Tolentino-Hernández, R. V., & Caballero-Briones, F. (2022). Carbon-based radar absorbing materials: A critical review. Journal of Science: Advanced Materials and Devices, 7(3), 100454

DOI: 10.1016/j.jsamd.2022.100454

Google Scholar

[66] Zhou, M., Yan, Q., Fu, Q., & Fu, H. (2020). Self-healable ZnO@ multiwalled carbon nanotubes (MWCNTs) /DA-PDMS nanocomposite via Diels-Alder chemistry as microwave absorber: A novel multifunctional material. Carbon, 169, 235–247

DOI: 10.1016/j.carbon.2020.07.003

Google Scholar

[67] Manjunatha, M., Kumar, R., Anupama, A. v., Khopkar, V. B., Damle, R., Ramesh, K. P., & Sahoo, B. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8(2), 2192–2200.

DOI: 10.1016/j.jmrt.2019.01.022

Google Scholar

[68] Kim, S., Lee, S., Zhang, Y., Park, S., & Gu, J. (2023). Carbon‐Based Radar Absorbing Materials toward Stealth Technologies. Advanced Science, 10 (32). https://doi.org/

DOI: 10.1002/advs.202303104

Google Scholar

[69] Ruiz-Perez, F., López-Estrada, S. M., Tolentino-Hernández, R. V., & Caballero-Briones, F. (2022). Carbon-based radar absorbing materials: A critical review. Journal of Science: Advanced Materials and Devices, 7(3), 100454

DOI: 10.1016/j.jsamd.2022.100454

Google Scholar