Cobalt Titanate/Natural Rubber Composites: A Promising Microwave Absorber in X-Band

Article Preview

Abstract:

The proliferation of X-band microwaves across wireless networks, satellite communications, and radar systems has raised global concerns regarding their potential impact on human health and communication security. Additionally, advancements in radar detection technology have diminished the effectiveness of military equipment in modern warfare, driving a heightened demand for materials capable of absorbing microwaves across the X-band spectrum in both civilian and military sectors. Effective microwave absorbing materials (MAM) ideally exhibit lightweight construction, robust absorption capabilities, and a broad effective absorption band. Among the array of reported MAM, rubber-based microwave absorbers emerge as particularly promising for practical application. Their exceptional flexibility, environmental resilience, favorable mechanical properties, versatility, and ease of processing distinguish them in this domain. Cobalt Titanate (CoTiO3), a common perovskite with the ABO3 structure, showcases remarkable magnetic and semiconducting characteristics, including outstanding photochemical stability, efficient light absorption, and high carrier mobility. These attributes render it versatile for various applications, spanning catalysis, adsorption, dielectric ceramics, magnetic recording, gas sensors, and pigments. A composite material comprising Cobalt Titanate and Natural Rubber holds significant promise as a microwave absorbing material in the X-band spectrum. Its potential lies in leveraging the synergistic properties of both constituents to achieve enhanced microwave absorption performance, offering substantial implications for various civilian and military applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

105-120

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Govindasamy, N.K. Mathew, V.K. Asapu, V. Subramanian, B. Subramanian, Evaluating the microwave absorbing performance of polymer-free thin Fe3O4− MWCNT NCs in X-band region, Surf. Interfaces 44 (2024) 103716.

DOI: 10.1016/j.surfin.2023.103716

Google Scholar

[2] C. Mu, M. Wang, R. Zhang, B. Wang, Y. Hou, J. Xiang, et al., Heterogeneous structure design of Co3InC0. 75/In/C derived from dual MOFs with core-shell structure for broad microwave absorption bandwidth, Surf. Interfaces 46 (2024) 104160.

DOI: 10.1016/j.surfin.2024.104160

Google Scholar

[3] R. Li, J. Lu, C. Li, Y. Cui, D. Lv, Y. Chen, et al., Mesoporous vanadium nitride nanofiber@ N-doped carbon with excellent microwave absorption and anti-corrosion, Colloids Surf. A: Physicochem. Eng. Aspects 686 (2024) 133420.

DOI: 10.1016/j.colsurfa.2024.133420

Google Scholar

[4] H.L. Yang, C.Q. Li, R.W. Mo, J.N. Wang, Facile preparation and broadband microwave absorption of multilayered materials based on thin films of reduced graphene oxide, Carbon 224 (2024) 119093.

DOI: 10.1016/j.carbon.2024.119093

Google Scholar

[5] B. Li, F. Wang, K. Wang, J. Qiao, D. Xu, Y. Yang, et al., Metal sulfides based composites as promising efficient microwave absorption materials: a review, J. Mater. Sci. Technol. 104 (2022) 244-268.

DOI: 10.1016/j.jmst.2021.06.065

Google Scholar

[6] N. Chadha, P. Saini, Post synthesis foaming of graphene-oxide/chitosan aerogel for efficient microwave absorbers via regulation of multiple reflections, Mater. Res. Bull. 143 (2021) 111458.

DOI: 10.1016/j.materresbull.2021.111458

Google Scholar

[7] J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao, L. Li, et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices, Carbon 162 (2020) 157-171.

DOI: 10.1016/j.carbon.2020.02.047

Google Scholar

[8] C. Wang, J. Li, S. Guo, High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure, Compos. Part A: Appl. Sci. Manuf. 125 (2019) 105522.

DOI: 10.1016/j.compositesa.2019.105522

Google Scholar

[9] L.H. Bac, N.T. Phuong, D.T. Kim Thoa, N.H. Tuan, D.D. Dung, T.V. Diem Ngoc, P.P. Hung, Structural, Ferroelectric and Magnetic Properties of NiTiO3–CoTiO3 Solid Solutions Synthesized by Sol–Gel Method, Int. J. Nanosci. 22(02) (2023) 2350010.

DOI: 10.1142/s0219581x23500102

Google Scholar

[10] R.A. Silva, R.G.M. Oliveira, M.A.S. Silva, A.S.B. Sombra, Effect of V2O5 addition on the structural and electrical properties of CoTio3, Compos. Part B: Eng. 176 (2019) 107286.

DOI: 10.1016/j.compositesb.2019.107286

Google Scholar

[11] Y. Zhang, W. Zhou, H. Chen, G. Duan, H. Luo, Y. Li, Facile preparation of CNTs microspheres as improved carbon absorbers for high-efficiency electromagnetic wave absorption, Ceram. Int. 47(7) (2021) 10013-10018.

DOI: 10.1016/j.ceramint.2020.12.147

Google Scholar

[12] J. Yu, Y. Li, X. Xu, G. Duan, Y. Li, W. Zhou, Rambutan-like Nb2O5@ SHCs microspheres for improved microwave absorption performance, Compos. Commun. 24 (2021) 100643.

DOI: 10.1016/j.coco.2021.100643

Google Scholar

[13] D.S. Mahmoud, E.M. Eldesouki, W.M. Abd El-Gawad, Nano-lithium ferrite/nanosilica-filled butadiene-acrylonitrile rubber for microwave absorption, Mater. Chem. Phys. 313 (2024) 128673.

DOI: 10.1016/j.matchemphys.2023.128673

Google Scholar

[14] M.F. Elmahaishi, I. Ismail, F.D. Muhammad, A review on electromagnetic microwave absorption properties: their materials and performance, J. Mater. Res. Technol. 20 (2022) 2188-2220.

DOI: 10.1016/j.jmrt.2022.07.140

Google Scholar

[15] S. Li, X. Tang, Y. Zhang, Q. Lan, Z. Hu, L. Li, N. Zhang, P. Ma, W. Dong, W. Tjiu, Z. Wang, T. Liu, Corrosion-Resistant Graphene-Based Magnetic Composite Foams for Efficient Electromagnetic Absorption, ACS Appl. Mater. Interfaces.

DOI: 10.1021/acsami.1c23439

Google Scholar

[16] Y. Zhou, M. Liya, R. Li, D. Chen, Y. Lu, C. Yayi, X. Luo, H. Xie, W. Zhou, Enhanced heat-resistance property of aluminum-coated carbonyl iron particles as microwave absorption materials, J. Magn. Magn. Mater. 524 (2021) 167681.

DOI: 10.1016/j.jmmm.2020.167681

Google Scholar

[17] J. Hu, C. Liang, J. Li, Y. Liang, S. Li, G. Li, et al., Flexible reduced graphene oxide@ Fe3O4/silicone rubber composites for enhanced microwave absorption, Appl. Surf. Sci. 570 (2021) 151270.

DOI: 10.1016/j.apsusc.2021.151270

Google Scholar

[18] Y. Huang, J. Liu, Y. Deng, Y. Qian, X. Jia, M. Ma, Z. Wang, The application of perovskite materials in solar water splitting, J. Semicond. 41(1) (2020) 011701.

DOI: 10.1088/1674-4926/41/1/011701

Google Scholar

[19] B.B. Sahu, A. Nayak, S.K. Patri, Metal oxide perovskites: Structure and properties, in: Perovskite Metal Oxides, Elsevier, 2023, pp.23-53.

DOI: 10.1016/b978-0-323-99529-0.00008-4

Google Scholar

[20] C.S. Garoufalis, I. Galanakis, Z. Zeng, D.B. Hayrapetyan, S. Baskoutas, Structural and Electronic Properties of Small Perovskite Nanoparticles of the Form ABX3 (A= MA, DEA, FA, GA, B= Pb, Sn, X= Cl, Br, I), Electron. Mater. 2(3) (2021) 382-393.

DOI: 10.3390/electronicmat2030026

Google Scholar

[21] H. Li, Q. Zhang, Z. Zhu, Z. Ge, C. Li, J. Meng, Y. Tian, Unraveling the effect of B-site antisite defects on the electronic and magnetic properties of the quadruple perovskite CaCu3Fe2Nb2O12, Phys. Chem. Chem. Phys. 21(6) (2019) 3059-3065.

DOI: 10.1039/c8cp06395h

Google Scholar

[22] L. Paramanik, S. Subudhi, K.M. Parida, Visible light active titanate perovskites: An overview on its synthesis, characterization and photocatalytic applications, Mater. Res. Bull. 155 (2022) 111965.

DOI: 10.1016/j.materresbull.2022.111965

Google Scholar

[23] S. Ghaemifar, M. Rahimi-Nasrabadi, S. Pourmasud, M. Eghbali-Arani, M. Behpour, A. Sobhani-Nasab, Preparation and characterization of MnTiO3, FeTiO3, and CoTiO3 nanoparticles and investigation various applications: a review, J. Mater. Sci. Mater. Electron. 31 (2020) 6511-6524.

DOI: 10.1007/s10854-020-03241-w

Google Scholar

[24] A. Alizadeh, M. Roudgar-Amoli, S.M. Bonyad-Shekalgourabi, Z. Shariatinia, M. Mahmoudi, F. Saadat, Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review, Renew. Sustain. Energy Rev. 157 (2022) 112047.

DOI: 10.1016/j.rser.2021.112047

Google Scholar

[25] S. Aynehband, E. Nouri, M.R. Mohammadi, Y. Li, Performance of CoTiO3 as an oxide perovskite material for the light scattering layer of dye-sensitized solar cells, New J. Chem. 43(9) (2019) 3760-3768.

DOI: 10.1039/c9nj00414a

Google Scholar

[26] Q. Yao, K. Fu, R. Ji, M. Ying, Y. Yang, K. Yang, et al., Synchronous achievement of ultra-wideband microwave absorption and high thermal conduction in spongy TiO2-based magnetic composites via constructing magnetic/dielectric double loss and phonon/electron co-transmission, J. Mater. Chem. C.

DOI: 10.1039/d3tc03886f

Google Scholar

[27] M. Apit, R.O. Bura, W.A. Adi, R.A. Ajiesastra, SYNTHESIS AND CHARACTERIZATION OF CoTi(1-X)Mn(X)O3 AS A RADAR ABSORBING MATERIAL, J. Pertahanan: Media Inf. tentang Kajian dan Strategi Pertahanan yang Mengedepankan Identity, Nasionalism dan Integrity 6(1) (2020) 1-11.

DOI: 10.33172/jp.v6i1.697

Google Scholar

[28] X. Luo, F. Muttaqin, Y. Zhang, Investigating non-petroleum-based biodegradable polymers as eco-friendly and sustainable materials in asphalt modification: A review on natural rubbers and natural oils, J. Cleaner Prod. 140483 (2024).

DOI: 10.1016/j.jclepro.2023.140483

Google Scholar

[29] D. Kim, J. Park, D. Lee, K. Seo, Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement, Polymers 12 (2020).

DOI: 10.3390/polym12092020

Google Scholar

[30] A. Krainoi, C. Kummerlöwe, Y. Nakaramontri, S. Wisunthorn, N. Vennemann, S. Pichaiyut, et al., Novel natural rubber composites based on silver nanoparticles and carbon nanotubes hybrid filler, Polymer Composites 41(2) (2020) 443-458.

DOI: 10.1002/pc.25378

Google Scholar

[31] E. Mastalygina, I. Varyan, N. Kolesnikova, M. González, A. Popov, Effect of natural rubber in polyethylene composites on morphology, mechanical properties and biodegradability, Polymers 12 (2020).

DOI: 10.3390/polym12020437

Google Scholar

[32] S. Jose, P. Shanumon, A. Paul, J. Mathew, S. Thomas, Physico-mechanical, thermal, morphological, and aging characteristics of green hybrid composites prepared from wool-sisal and wool-palf with natural rubber, Polymers 14 (2022).

DOI: 10.3390/polym14224882

Google Scholar

[33] C. Zhang, Z. Tang, X. An, S. Fang, S. Wu, B. Guo, Generic method to create segregated structures toward robust, flexible, highly conductive elastomer composites, ACS Appl. Mater. Interfaces (2021).

DOI: 10.1021/acsami.1c04802

Google Scholar

[34] S. Banerjee, S. Mandal, I. Arief, R. Layek, A. Ghosh, K. Yang, J. Kumar, P. Formánek, A. Fery, G. Heinrich, A. Das, Designing supertough and ultrastretchable liquid metal-embedded natural rubber composites for soft-matter engineering, ACS Appl. Mater. Interfaces (2021).

DOI: 10.1021/acsami.1c00374

Google Scholar

[35] A. Boonmahitthisud, K. Boonkerd, Sustainable development of natural rubber and its environmentally friendly composites, Green Sustain. Chem. 28 (2021) 100446.

DOI: 10.1016/j.cogsc.2021.100446

Google Scholar

[36] N. Singha, M. Mahapatra, M. Karmakar, P. Chattopadhyay, Processing, characterization and application of natural rubber based environmentally friendly polymer composites, Sustainable Polymer Composites and Nanocomposites (2019).

DOI: 10.1007/978-3-030-05399-4_29

Google Scholar

[37] S. Lee, S. Park, K. Chung, K. Jang, Phlogopite-reinforced natural rubber (NR)/ethylene-propylene-diene monomer rubber (EPDM) composites with aminosilane compatibilizer, Polymers 13 (2021).

DOI: 10.3390/polym13142318

Google Scholar

[38] E. Mastalygina, I. Varyan, N. Kolesnikova, M. González, A. Popov, Effect of natural rubber in polyethylene composites on morphology, mechanical properties and biodegradability, Polymers 12 (2020).

DOI: 10.3390/polym12020437

Google Scholar

[39] S. Banerjee, S. Mandal, I. Arief, R. Layek, A. Ghosh, K. Yang, J. Kumar, P. Formánek, A. Fery, G. Heinrich, A. Das, Designing supertough and ultrastretchable liquid metal-embedded natural rubber composites for soft-matter engineering, ACS Appl. Mater. Interfaces (2021).

DOI: 10.1021/acsami.1c00374

Google Scholar

[40] C. Zhuang, R. Tao, X. Liu, L. Zhang, Y. Cui, Y. Liu, Z. Zhang, Enhanced thermal conductivity and mechanical properties of natural rubber-based composites co-incorporated with surface treated alumina and reduced graphene oxide, Diam. Relat. Mater. (2021).

DOI: 10.1016/j.diamond.2021.108438

Google Scholar

[41] A. Dasaesamoh, K. Khotmungkhun, K. Subannajui, Natural rigid and hard plastic fabricated from elastomeric degradation of natural rubber composite with ultra-high magnesium carbonate content, Polymers 15 (2023).

DOI: 10.3390/polym15143078

Google Scholar

[42] V. Mahesh, S. Joladarashi, S. Kulkarni, Evaluation of tensile strength and slurry erosive behaviour of jute reinforced natural rubber based flexible composite, (2020) 30, 77-82.

DOI: 10.18280/rcma.300204

Google Scholar

[43] J. Asami, B.V. Quevedo, A.R. Santos Jr, L.P. Giorno, D. Komatsu, E.A. de Rezende Duek, The impact of non-deproteinization on physicochemical and biological properties of natural rubber latex for biomedical applications, Int. J. Biol. Macromol. 253 (2023) 126782.

DOI: 10.1016/j.ijbiomac.2023.126782

Google Scholar

[44] N.B. Guerra, G.S.A. Pegorin, M.H. Boratto, N.R. de Barros, C.F. de Oliveira Graeff, R.D. Herculano, Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis, Mater. Sci. Eng. C 126 (2021) 112126.

DOI: 10.1016/j.msec.2021.112126

Google Scholar

[45] Y. Mardiyati, D.A. Putra, L. Fauziah, O.A. Rachman, A. Hariyanto, S. Steven, Development of sansevieria trifasciata/natural rubber composites for a soft body armor application, Compos. Part C: Open Access 12 (2023) 100407.

DOI: 10.1016/j.jcomc.2023.100407

Google Scholar

[46] T.R. Mohanty, M.D. Ashidha, S. Ramakrishnan, S.K.P. Amarnath, Influence of oligomeric resins on natural rubber-carbon black-silica composites for tire tread application, J. Ind. Eng. Chem. 130 (2024) 278-296.

DOI: 10.1016/j.jiec.2023.09.031

Google Scholar

[47] A. Bera, D. Ganguly, S.K. Ghorai, J.P. Rath, S. Ramakrishnan, J. Kuriakose, ... S. Chattopadhyay, Treatment of natural rubber with bio-based components: a green endeavor to diminish the silica agglomeration for tyre tread application, Chem. Eng. J. Adv. 11 (2022) 100349.

DOI: 10.1016/j.ceja.2022.100349

Google Scholar

[48] M. Hoy, N.Q. Tran, A. Suddeepong, S. Horpibulsuk, M. Mobkrathok, A. Chinkulkijniwat, A. Arulrajah, Improved fatigue properties of cement-stabilized recycled materials–lateritic soil using natural rubber latex for sustainable pavement applications, Transp. Geotech. 40 (2023) 100959.

DOI: 10.1016/j.trgeo.2023.100959

Google Scholar

[49] L. Peng, D. Ge, S. Lv, Y. Xue, J. Chen, H. Sun, J. Wang, Use of waste rubber particles in cement-stabilized aggregate for the eco-friendly pavement base layer construction: laboratory performance and field application, Constr. Build. Mater. 402 (2023) 133023.

DOI: 10.1016/j.conbuildmat.2023.133023

Google Scholar

[50] W. Zhao, Q. Yang, Performance characterization and life cycle assessment of semi-flexible pavement after composite modification of cement-based grouting materials by desulfurization ash, fly ash, and rubber powder, Constr. Build. Mater. 359 (2022) 129549.

DOI: 10.1016/j.conbuildmat.2022.129549

Google Scholar

[51] H. Zong, J. Long, J. Zheng, Y. Shen, B. Li, Y. Shen, ... X. Du, Preparation of nickel slag derived Fe3O4/conductive carbon black/natural rubber composites and enhanced microwave absorption, J. Mater. Sci. Mater. Electron. 35 (2024) 157.

DOI: 10.1007/s10854-023-11891-9

Google Scholar

[52] L. Huang, J. Chen, B. Liu, P. Zhao, L. Liao, J. Tao, ... Y. Zhao, Morphology and microwave-absorbing performances of rubber blends with multi-walled carbon nanotubes and molybdenum disulfide, Nanomaterials 13(10) (2023) 1644.

DOI: 10.3390/nano13101644

Google Scholar

[53] H. Yang, A. Wang, X. Feng, H. Dong, T. Zhuang, J. Sui, ... C. Sun, PPyNT/NR/NBR composites with excellent microwave absorbing performance in X-band, Polymers 15(8) (2023) 1866.

DOI: 10.3390/polym15081866

Google Scholar

[54] M. Zhou, G. Wan, P. Mou, S. Teng, S. Lin, G. Wang, CNT@ NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications, J. Mater. Chem. C 9(3) (2021) 869-880.

DOI: 10.1039/d0tc04388e

Google Scholar