Hard-Soft Magnetic Composite as Microwave Absorber in S-Band and C-Band

Article Preview

Abstract:

This research discusses synthesizing and characterizing magnetic hard-soft composite materials (Ba0.6Sr0.4Fe11.5Al0.5O19/NiFe2O4) applied as microwave absorbers at S-band and C-band frequencies. The mechanical alloying method for sample synthesis uses a high-energy ball mill and sintering at high temperatures. Characterization of the crystal structure was done using an X-ray diffractometer. The Ba0.6Sr0.4Fe11.5Al0.5O19 sample (hard magnetic) has a hexagonal structure, while the NiFe2O4 (soft magnetic) has a cubic structure. SEM analysis revealed a heterogeneous form with particle sizes ranging from 0.4 to 0.8 µm. Magnetization at room temperature was characterized using a vibrating-sample magnetometer (VSM). The magnetization saturation (Ms), magnetic remanent (Mr), and field coercivity (Hc) are 54.22 emu/g, 21.68 emu/g, and 0.876 kOe, respectively. Microwave absorption characterized using vector network analysis (VNA) shows that the hard-soft magnetic composite sample (Ba0.6Sr0.4Fe11.5Al0.5O19/NiFe2O4) has a minimum reflection loss (RLmin) value of -29.86 dB for the S-band and -18.76 dB for the C-band area with an effective bandwidth reaching 2.34 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

121-130

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Liu, B. Huang, Y. Lu, Y. Zhao, X. Tang, and Y. Shi, Interactions between electromagnetic radiation and biological systems, iScience 27, 109201, March 15, 2024;.

DOI: 10.1016/j.isci.2024.109201

Google Scholar

[2] Q. Wei, X. Ge, J. Liu, and H. Li, A study on the ambient electromagnetic radiation level of 5G base stations in typical scenarios, Radiat Detect Technol Methods (2024);.

DOI: 10.1007/s41605-024-00452-1

Google Scholar

[3] X. Wang, G. Zhou, J. Lin, T. Qin, J. Du, L. Guo, P. Lai, Y. jing, Z. Zhang, Y. Zhou, and G. Ding, Effects of radiofrequency field from 5G communication on fecal microbiome and metabolome profiles in mice, Sci Rep. 2024 Feb 12;14(1):3571;.

DOI: 10.1038/s41598-024-53842-2

Google Scholar

[4] C. Hu, H. Zuo, and Y. Li, Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front. Public Health 9:691880, 2021;.

DOI: 10.3389/fpubh.2021.691880

Google Scholar

[5] I. Abdalla, J. Cai, W. Lu, J. Yu, Z. Li, and B. Ding, Recent progress on electromagnetic wave absorption materials enabled by electrospun carbon nanofibers, Carbon, Vol. 213, September 2023, 118300;.

DOI: 10.1016/j.carbon.2023.118300

Google Scholar

[6] W. Si, Q. Liao, W. Hou, L. Chen, X. Li, Z. Zhang, M. Sun, Y. Song, and L. Qin, Low-Frequency Broadband Absorbing Coatings Based on MOFs: Design, Fabrication, Microstructure and Properties. Coatings 2022,12,766;.

DOI: 10.3390/coatings12060766

Google Scholar

[7] S. Ren, P. Ju, H. Yu, B. Nan, L. Wang, A. Lian, X. Zang, and H. Liang, Preparation of Metal–Organic- Framework-Derived Fe-CN@CoCN Nanocomposites and Their Microwave Absorption Performance. Coatings 2024,14,133;.

DOI: 10.3390/coatings14010133

Google Scholar

[8] S. Shi, P. Mou, D. Wang, X. Li, S. Teng, M. Zhou, X. Yu, Z. Deng, G. Wan, and G. Wang, Co/carbon nanofiber with adjustable size and content of Co nanoparticles for tunable microwave absorption and thermal conductivity, Journal of Materiomics (2023), doi: https://doi.org/10.1016/ j.jmat.2023.04.010.

DOI: 10.1016/j.jmat.2023.04.010

Google Scholar

[9] Y. Fang, H. Li, M. N. Akhtar, and L. Shi, High-efficiency microwave absorber based on carbon Fiber@La0.7Sr0.3MnO@NiO composite for X-band applications, Ceramics International Volume 47, Issue 14, 15 July 2021, Pages 20438-20446; https://doi.org/.

DOI: 10.1016/j.ceramint.2021.04.053

Google Scholar

[10] Z. Mu, G. Wei, H. Zhang, L. Gao, Y. Zhao, S. Tang, and G. Ji, The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature, Nano Res. 15, 7731–7741 (2022).

DOI: 10.1007/s12274-022-4500-6

Google Scholar

[11] A. Arya and N. Yashan, Microwave Absorption Properties Of Magnetic Perovskite/Epoxy Based Composites:A Predictive Approach, Migration Letters, Vol. 21, No: S5 (2024), pp.190-197; https://migrationletters.com/index.php/ml/article/view/7706/4983.

Google Scholar

[12] Yunasfi, Mashadi, D. S. Winatapura, J. Setiawan, Y. Taryana, Y. E. Gunanto, and W. A. Adi, Enhanced Magnetic and Microwave Absorbing Properties of Nd3+ Ion Doped CoFe2O4 by Solid-State Reaction Method, Phys. Status Solidi A 2023, 220, 2200718.

DOI: 10.1002/pssa.202200718

Google Scholar

[13] M. P. Izaak, Y. E. Gunanto, H. Sitompul, Y. Sarwanto, and W. A. Adi, The Ability of ZnFe2O4 Nanostructure as Electromagnetic Wave Absorber in Frequency Range 2-18 GHz, Key Engineering Materials, Vol. 940, pp.31-37, 2023; https://www.scientific.net/KEM.940.31.

DOI: 10.4028/p-20h232

Google Scholar

[14] J. Song, Y. Gao, G. Tan, Q. Man, and Z. Wang, Comparative study of microwave absorption properties of Ni–Zn ferrites obtained from different synthesis technologies, Ceramics International, Vol. 48, Issue 16, 2022, Pages 22896-22905;.

DOI: 10.1016/j.ceramint.2022.04.237

Google Scholar

[15] P.N. Dhruv, R.C. Pullar, C. Singh, F.E. Carvalho, R.B. Jotania, S.S. Meena, J. Singh, Design and development of Ga-substituted Z-type hexaferrites for microwave absorber applications: Mössbauer, static and dynamic properties, Ceramics International, Vol. 47, Issue 1, 2021, Pages 1145-1162;.

DOI: 10.1016/j.ceramint.2020.08.231

Google Scholar

[16] Y.E. Gunanto, H. Sitompul, M.P. Izaak, Y. Sarwanto, and W.A. Adi, Microwave Absorbing Material of Ba0.95La0.05Fe12-2xZnxTixO19 (x = 0; 0.5; and 1.0) with Broadband Characteristic at X-band Frequency J. Eng. Technol. Sci., Vol. 54, No. 2, 2022, 220222;

DOI: 10.5614/j.eng.technol.sci.2022.54.2

Google Scholar

[17] S. Kolev, P. Peneva, K. Krezhov, T. Malakova, C. Ghelev, T. Koutzarova, D. Kovacheva, B. Vertruyen, R. Closset, L. M. Tran, and A. Zaleski, Structural, Magnetic and Microwave Characterization of Polycrystalline Z-Type Sr3Co2Fe24O41 Hexaferrite, Materials 2020, 13(10), 2355;.

DOI: 10.3390/ma13102355

Google Scholar

[18] X. Li, L. Zhu, Z. Su, X. Li, W. Yu, J. Liu, and Cuicui Lv, Microwave absorbing performance and temperature resistance of multifunctional foamed ceramics prepared by the sintering method, Ceramics International, Vol. 49, Issue 22, Part A, 2023, Pages 34992-35000;.

DOI: 10.1016/j.ceramint.2023.08.173

Google Scholar

[19] P. Astafev, K. Andryushin, A. Pavelko, A. Lerer, Y. Reizenkind, E. Glazunova, L. Shilkina, I. Andryushina, A. Nagaenko, and L. Reznichenko, Microwave Absorption Properties of Ceramics Based on BiFeO3 Modified with Ho, Solids 2024, 5, 66–83;.

DOI: 10.3390/solids5010005

Google Scholar

[20] T. Wang, X. Wang, D. Tang, C. Jia, B. Ren, and Y. Ji, Research Progress of Ceramic-based Absorbing Composite Materials, Academic Journal of Science and Technology, Vol. 8, No. 3, 2023, 24-28;.

DOI: 10.54097/09bq0587

Google Scholar

[21] S. J. Salih and W. M. Mahmood, Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application, Heliyon, 9, 2023, e16601;.

DOI: 10.1016/j.heliyon.2023.e16601

Google Scholar

[22] Himanshi, R. Jasrotia, J. Prakash, R. Verma, P. Thakur, A. Kandwal, F. Wan, and A. Thakur, Synthesis, characterization, and applications of doped barium hexaferrites: A review, Physica B: Condensed Matter, Vol. 667, 2023, 415202;.

DOI: 10.1016/j.physb.2023.415202

Google Scholar

[23] H. Huang, M. He, O. B. Kotova, Y. Golubev, F. Dong, L. A. Gömze, E. Kurovics, Rui LV, and S. Sun, Preparation and electromagnetic microwave adsorption performances of porous nanocomposite self-assembled by CoFe2O4 nanoparticles and diatomite, Epitoanyag-Journal of Silicate Based and Composite Materials, Vol. 72, No. 4, 2020;.

DOI: 10.14382/epitoanyag-jsbcm.2020.20

Google Scholar

[24] V.S. Zhandun, The magnetic, electronic, optical, and structural properties of the AB2O4 (A = Mn, Fe, Co; B = Al, Ga, In) spinels: Ab initio study, Journal of Magnetism and Magnetic Materials, Vol. 533, 2021, 168015;.

DOI: 10.1016/j.jmmm.2021.168015

Google Scholar

[25] S. Kalia, A. Kumar, N. Munjal and N. Prasad, Synthesis of ferrites using various parts of plants: a mini review, Journal of Physics: Conference Series, 1964, 2021, 032003;.

DOI: 10.1088/1742-6596/1964/3/032003

Google Scholar

[26] P. A. Udhaya and M. Meena, Albumen Assisted Green Synthesis of NiFe2O4 Nanoparticles and Their Physico-Chemical Properties, Materials Today: Proceedings, Volume 9, Part 3, 2019, Pages 528-534;.

DOI: 10.1016/j.matpr.2018.10.372

Google Scholar

[27] P. Banerjee, A. Pal, and P. Dey, Investigation of the electromagnetic effect on NiFe2O4 nano particles and its electrical memory effect, AIP Conf. Proc. 3067, 020031 (2024);.

DOI: 10.1063/5.0204485

Google Scholar

[28] H. Boussafel, C. Sedrati, and S. Alleg, Green synthesis of NiFe2O4, CoFe2O4, and Ni0.5Co0.5Fe2O4 by sol–gel autocombustion method using olive leaf extract as fuel, Appl. Phys. A 130, 374 (2024);.

DOI: 10.1007/s00339-024-07547-y

Google Scholar

[29] DN Ghaffar, M.M. Arman, S.I. El-Dek, and R. Ramadan, Studying the preparation, characterization, and physical properties of NiFe2O4, TiO2, and NiFe2O4/TiO2 nanocomposite. Appl. Phys. A 130, 254 (2024).

DOI: 10.1007/s00339-024-07397-8

Google Scholar

[30] Y. E. Gunanto, H. Sitompul, M. P. Izaak, Y. Sarwanto, and W. A. Adi, The Ability of NiFe2O4 Samples to Reduce Electromagnetic Wave Pollution in the Frequency Range of 2-18 GHz, Key Engineering Materials, Vol. 940, pp.39-46, 2023; https://www.scientific.net/KEM.940.39.

DOI: 10.4028/p-9r8oui

Google Scholar

[31] V. N. Dhage, M. L. Mane, A. P. Keche, C. T. Birajdar, and K. M. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique, Physica B: Condensed Matter, Vol. 406, Issue 4, 15 February 2011, Pages 789-793;.

DOI: 10.1016/j.physb.2010.11.094

Google Scholar

[32] M. Thakur, C. Singh, K.C.J. Raju, B. Arun, T.T.T. Carol, and A.K. Srivastava, Fabrication of bicomponent Co–La substituted strontium hexaferrite for tunable microwave absorber application: Structural, morphological, reflection loss, input impedance metrics, Physica B: Condensed Matter, Vol. 679, 2024, 415735;.

DOI: 10.1016/j.physb.2024.415735

Google Scholar

[33] TD. Thanh, N. Tran, N.T.V. Chinh, N.T.N. Anh, D.H. Manh, and N.Q. Tuan, Excellent microwave absorption performances of cobalt-doped SrFe12O19 hexaferrite with varying incident angles, J. of Alloys and Compounds, Vol. 952, 2023, 170060;.

DOI: 10.1016/j.jallcom.2023.170060

Google Scholar

[34] Y. E. Gunanto, M. Manawan, M. P. Izaak, H. Sitompul, Yunasfi, and W. A. Adi, Structural and Magnetic Properties of Barium-Strontium- Hexaferrite Material Ba0.6Sr0.4Fe10-xCoxMnTiO19 (x = 0.5; 1.0; and 1.5) as Microwave Absorbers, J. Math. Fund. Sci., Vol. 55, No. 3, 2024, 208-221;.

DOI: 10.5614/j.math.fund.sci.2024.55.3.1

Google Scholar

[35] T. Lai, W. Qin, C. Cao, R. Zhong, Y. Ling, and Y. Xie, Preparation of a Microwave- Absorbing UV Coating Using a BaFe12O19-Polypyrrole Nanocomposite Filler, Polymers 2023, 15,1839;.

DOI: 10.3390/polym15081839

Google Scholar

[36] E. Yustanti, A. Noviyanto, M. Ikramullah, Y.A. Marsillam, Y. Taryana, and A. Taufiq, High-performance microwave absorption by optimizing hydrothermal synthesis of BaFe12O19@MnO2 core–shell composites, RSC Adv., 2023, 13, 27634–27647;.

DOI: 10.1039/D3RA05114E

Google Scholar

[37] J. Manoj and R. Ezhil Vizhi, Effect of Al substitution on their structural and magnetic properties of Ba0.5Sr0.5Fe12O19 prepared via sol–gel auto‐combustion method, J Mater Sci: Mater Electron (2024) 35:370;.

DOI: 10.1007/s10854-024-12037-1

Google Scholar

[38] J.-P. Lim, M.-G. Kang, Y.-M. Kang, Development of Multi-Cation-Doped M-Type Hexaferrite Permanent Magnets. Appl.Sci. 2023, 13, 295;.

DOI: 10.3390/app13010295

Google Scholar

[39] R. Kumar R, A. Kalaboukhov, Y.-C. Weng, K.N. Rathod, T. Johansson, A. Lindblad, M. V. Kamalakar, and T. Sarkar, Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits, ACS Appl. Mater. Interfaces 2024, 16, 19225−19234;.

DOI: 10.1021/acsami.4c01501

Google Scholar

[40] Yunasfi, S. H. Dewi, Mashadi, D. S. Winatapura, J. Setiawan, A. Mulyawan, Y. E. Gunanto, and W. A. Adi, Exploring the structural and magnetic properties of La-doped nickel ferrite for microwave absorbing application, J. of Magnetism and Magnetic Materials 603 (2024) 172267;.

DOI: 10.1016/j.jmmm.2024.172267

Google Scholar

[41] Y. E. Gunanto, H. Sitompul, M.P. Izaak, E. Jobiliong, Yunasfi, J. Setiawan, W.A. Adi, and A. Manaf, The Impact of Al3+ ion substitution on microwave absorption of hexaferrite compound Ba0.6Sr0.4Fe12−xAlxO19 (x = 0.25, 0.50, 0.75, and 1.00), Phys. Scr. 99 (2024) 025002;.

DOI: 10.1088/1402-4896/ad1799

Google Scholar

[42] Y.E. Gunanto, H. Sitompul, M.P. Izaak, E. Jobiliong, Y. Sarwanto, and W.A. Adi, The effect of Zn-dopant on the anisotropy constant and reflection loss of the Ba0.6Sr0.4Fe10-xZnxMnTiO19 (x = 0.1, 0.3, and 0.5), J. of Magnetism and Magnetic Materials 553 (2022) 169172;.

DOI: 10.1016/j.jmmm.2022.169172

Google Scholar

[43] P. S. Kumar, G. K. Sivasankara Yadav, V. K. Vamsi Krishna, A. Thirupathi, and P.Yamuna, Investigation on physical properties of Ni0.6Zn0.4Fe2O4 ferrite nanoparticles, Journal of Ovonic Research, Vol. 17, No. 2, 2021, p.191 – 199.

DOI: 10.15251/jor.2021.172.191

Google Scholar

[44] S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin, Y. Huang, J. Yang, Y. Hong, and J. Liu, State of the Art and Prospects in Metal‐Organic Framework‐Derived Microwave Absorption Materials, Nano-Micro Lett., 2022, 14:68;.

DOI: 10.1007/s40820-022-00808-6

Google Scholar

[45] Y. Marouani, J. Massoudi, M. Noumi, A. Benali, E. Dhahri, P. Sanguino, M. P. F. Graça, M. A. Valente, and B. F. O. Costa, Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19, RSC Adv., 2021, 11, 1531;

DOI: 10.1039/D0RA09465J

Google Scholar

[46] R. S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev and M. Hajdúchová, Structural, Magnetic, Dielectric, and Electrical Properties of NiFe2O4 Spinel Ferrite Nanoparticles Prepared by Honey-mediated Sol-Gel Combustion, Journal of Physical and Chemistry of Solids, Vol. 107, 2017, Pages 150-161; http://dx.doi.org/.

DOI: 10.1016/j.jpcs.2017.04.004

Google Scholar

[47] M. Hadi, K.M. Batoo, A. Chauhan, O.M. Aldossary, R. Verma, and Y. Yang, Tuning of Structural, Dielectric, and Electronic Properties of Cu Doped Co–Zn Ferrite Nanoparticles for Multilayer Inductor Chip Applications. Magnetochemistry 2021,7,53.

DOI: 10.3390/magnetochemistry7040053

Google Scholar

[48] Yohanes Edi Gunanto, Henni Sitompul, Maya Puspitasari Izaak, Eric Jobiliong, Yunasfi, Jan Setiawan, Wisnu Ari Adi, and Azwar Manaf, The Impact of Al3+ ion substitution on microwave absorption of hexaferrite compound Ba0.6Sr0.4Fe12−xAlxO19 (x = 0.25, 0.50, 0.75, and 1.00), Phys. Scr. 99 (2024) 025002;

DOI: 10.1088/1402-4896/ad1799

Google Scholar

[49] Nurshahiera Rosdi, Raba'ah Syahidah Azis1, Ismayadi Ismail, Nurhidayaty Mokhtar, Muhammad Misbah Muhammad Zulkimi, and Muhammad Syazwan Mustaffa, Structural, microstructural, magnetic and electromagnetic absorption properties of spiraled multiwalled carbon nanotubes/ barium hexaferrite (MWCNTs/ BaFe12O19) hybrid, Scientific Reports, 2021, 11:15982;.

DOI: 10.1038/s41598-021-95332-9

Google Scholar

[50] Y. Jin, H. Yu, Y. Wang, and L. Wang, Nan, B. Recent Progress in Electromagnetic Wave Absorption Coatings: From Design Principles to Applications. Coatings 2024, 14 (5), 607;.

DOI: 10.3390/coatings14050607

Google Scholar

[51] S. Kolev, P. Peneva, K. Krezhov, T. Malakova, C. Ghelev, T. Koutzarova, D. Kovacheva, B. Vertruyen, R.Closset, L. M. Tran, and A.Zaleski, Structural, Magnetic and Microwave Characterization of Polycrystalline Z-Type Sr3Co2Fe24O41 Hexaferrite, Materials 2020, 13, 2355;.

DOI: 10.3390/ma13102355

Google Scholar