[1]
Shahid, H. bin, Nasir, K., Ahmad, H., Ali, G., Bashir, S., & Quazi, M. M. (2024). Co-doping strategies for advanced solid-state electrolytes with lithium salt: a study on the structural and electrochemical properties of LATP. Materials Research Express, 11(5): 1-13.
DOI: 10.1088/2053-1591/ad431c
Google Scholar
[2]
Zhang, L., Dai, Y., Li, C., Dang, Y., Zheng, R., Wang, Z., Wang, Y., Cui, Y., Arandiyan, H., Shao, Z., Sun, H., Zhuang, Q., & Liu, Y. (2024). Recent advances in electrochemical impedance spectroscopy for solid-state batteries. Energy Storage Materials, 69: 1-38.
DOI: 10.1016/j.ensm.2024.103378
Google Scholar
[3]
Kang, J., Guo, X., Gu, R., Tang, Y., Hao, H., Lan, Y., Jin, L., & Wei, X. (2023). Effectof boron-based glass additives on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of Alloys and Compounds, 941: 1 - 9.
DOI: 10.1016/j.jallcom.2023.168857
Google Scholar
[4]
Jun, K., Sun, Y., Xiao, Y., Xiao, Y., Zeng, Y., Kim, R., Kim, H., Miara, L. J., Lim, D., Wang, Y. & Ceder, G. (2022). Lithium superionic conductors with corner-sharing frameworks. Nature Materials, 21: 924–931.
DOI: 10.1038/s41563-022-01222-4
Google Scholar
[5]
Ouyang, B., Wang, J., He, T., Bartel, C. J., Huo, H., Wang, Y., Lacivita, V., Kim, H., & Ceder, G. (2021). Synthetic accessibility and stability rules of NASICONs. Nature Communications, 12(1): 1 - 11
DOI: 10.1038/s41467-021-26006-3
Google Scholar
[6]
Wang, S., Fu, J., Liu, Y., Saravanan, R. S., Luo, J., Deng, S., Sham, T. K., Sun, X., & Mo, Y. (2023). Design principles for sodium superionic conductors. Nature Communications, 14(1): 1-11.
DOI: 10.1038/s41467-023-43436-3
Google Scholar
[7]
Zallocco, V. M., Freitas, J. M., Bocchi, N., & Rodrigues, A. C. M. (2022). Electro-chemical stability of a NASICON solid electrolyte from the lithium aluminum germanium phosphate series. Solid State Ionics, 378: 1 - 7.
DOI: 10.1016/j.ssi.2022.115888
Google Scholar
[8]
Rao, Y. B., Bharathi, K. K., & Patro, L. N. (2021). Review on the synthesis and doping strategies in enhancing the Na ion conductivity of Na3Zr2Si2PO12 (NASICON) based solid electrolytes. Solid State Ionics. 366–367.
DOI: 10.1016/j.ssi.2021.115671
Google Scholar
[9]
Jalalian-Khakshou, A., Phillips, C. O., Jackson, L., Dunlop, T. O., Margadonna, S., & Deganello, D. (2020). Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity. Journal of Materials Science, 55(6): 2291 - 2302.
DOI: 10.1007/s10853-019-04162-8
Google Scholar
[10]
Yang, Z., Tang, B., Xie, Z. & Zhou, Z. (2021). NASICON-Type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries. ChemElectroChem, 8, 1035–1047.
DOI: 10.1002/celc.202001527
Google Scholar
[11]
Deng, Z., Sai Gautam, G., Kolli, S. K., Chotard, J. N., Cheetham, A. K., Masquelier, C., & Canepa, P. (2020). Phase behaviour in rhombohedral NaSiCON electrolytes and electrodes, Chemistry of Materials, 32(18):7908 - 7920.
DOI: 10.1021/acs.chemmater.0c02695
Google Scholar
[12]
Yang, H., & Wu, N. (2022). Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review, Energy Science and Engineering. 10 (5): 1643 – 1671.
DOI: 10.1002/ese3.1163
Google Scholar
[13]
Yang, Z., Yuan, H., Zhou, C., Wu, Y., Tang, W., Sang, S., & Liu, H. (2020). Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery, Chemical Engineering Journal. 392: 1 – 7
DOI: 10.1016/j.cej.2019.123650
Google Scholar
[14]
Ghafari, M., Sanaee, Z., Babaei, A., & Mohajerzadeh, S. (2023). Realization of high-performance room temperature solid state Li-metal batteries using a LiF/PVDF-HFP composite membrane for protecting an LATP ceramic electrolyte. Journal of Materials Chemistry A, 11: 7605–7616.
DOI: 10.1039/d3ta00331k
Google Scholar
[15]
Li, Y., Deng, N., Wang, H., Zeng, Q., Luo, S., Jin, Y., Li, Q., Kang, W., & Cheng, B. (2023). Latest progresses and the application of various electrolytes in high-performance solid-state lithium-sulfur batteries. In Journal of Energy Chemistry, 82: 170–197.
DOI: 10.1016/j.jechem.2023.03.045
Google Scholar
[16]
Chen, R., Yao, C., Yang, Q., Pan, H., Yu, X., Zhang, K., & Li, H. (2021). Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. ACS Applied Materials and Interfaces, 13(16), 18743–18749.
DOI: 10.1021/acsami.1c01246
Google Scholar
[17]
Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L., & Rupp, J. L. (2021). Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Advance Energy Materials, 11: 1–63.
DOI: 10.1002/aenm.202002689
Google Scholar
[18]
Miao, X., Wang, H., Sun, R., Wang, C., Zhang, Z., Li, Z., & Yin, L. (2020). Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries, Energy Environ. Sci. (13): 3780–3822
DOI: 10.1039/d0ee01435d
Google Scholar
[19]
Zhu, J., Zhao, J., Xiang, Y., Lin, M., Wang, H., Zheng, B., He, H., Wu, Q., Huang, J. Y., & Yang, Y. (2020). Chemomechanical Failure Mechanism Study in NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries, Chemical Materials, 32: 4998–5008.
DOI: 10.1021/acs.chemmater.9b05295
Google Scholar
[20]
Oksuzoglu, F., Ates, S., Ozkendir, O. M., Celik, G., Eker, Y. R., & Baveghar, H. (2024). Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method. Ceramics International, 50(17), 31435 - 31441.
DOI: 10.1016/j.ceramint.2024.05.450
Google Scholar
[21]
Pu, X., Cheng, X., Yan, Q., Lin, Y., Yan, R., Yang, R., & Zhu, X. (2024). NASICON-type Ta5+ substituted LiZr2(PO4)3 with improved ionic conductivity as a prospective solid electrolyte. Ceramics International, 50(6), 9007 - 9015.
DOI: 10.1016/j.ceramint.2023.12.214
Google Scholar
[22]
Wang, Q., Bai, N., Wang, Y., He, X., Zhang, D., Li, Z., Sun, Q., Sun, H., Wang, B., Wang, G., & Fan, L. Z. (2024). Optimization and progress of interface construction of ceramic oxide solid-state electrolytes in Li-metal batteries. In Energy Storage Materials, 71: 1-16.
DOI: 10.1016/j.ensm.2024.103589
Google Scholar
[23]
Jetybayeva, A., Aaron, D. S., Belharouak, I., & Mench, M. M. (2023). Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries. Journal of Power Sources, 566:1-22.
DOI: 10.1016/j.jpowsour.2023.232914
Google Scholar
[24]
Zhang, L., Liu, Y., You, Y., Vinu, A., & Mai, L. (2023). NASICONs‐type solid‐state electrolytes: The history, physicochemical properties, and challenges. Interdisciplinary Materials, 2(1): 91–110
DOI: 10.1002/idm2.12046
Google Scholar
[25]
Luo, Y., Jiang, X., Yu, Y., Liu, L., Lin, X., Wang, Z., Han, L., Luo, Z., & Lu, A. (2023). Enhancement of electrical properties of LiTi2(PO4)3 ceramics via trivalent cation doping and microstructure regulation strategies. Solid State Ionics, 390: 1-2.
DOI: 10.1016/j.ssi.2022.116111
Google Scholar
[26]
Nkala, G. C., Masina, S., Billing, C., Forbes, R. P., & Billing, D. G. (2021). The role of Al3+, Dy3+ co-doping on the structure-property correlations in NASICON-type LiTi2(PO4)3 solid-state electrolytes. Acta Crystallographica Section A: Foundations and Advances, 77: 1-112.
DOI: 10.1107/s0108767321086128
Google Scholar
[27]
Lee, J., Wook Lee, Y., Shin, S., Ho Shin, T., & Lee, S. (2023). Interface characteristics of Li1+xAlxTi2-x(PO4)3 solid electrolyte with Ta-doping for All-Solid-State batteries. Inorganic Chemistry Communications, 154: 1-6.
DOI: 10.1016/j.inoche.2023.110895
Google Scholar
[28]
Zangina, T., Hassan, J., Azis, R. S., Matori, K. A., Ahmadu, U., Ndikilar, C. E., & Musa, M. A. (2018). Thermal Behavior of Al Substituted LiTi2(PO4)3 Nasicon compounds. Solid State Science and Technology, 26(2): 17-23
Google Scholar
[29]
Zangina, T., Hassan, J., Azis, R. S., Matori, K. A., Ndikilar, C. E., Nasir, M. M., & Suleiman, A.B. (2019). Structure, Thermal and Conductivity Behavior of Vanadium Substituted Li1.4Ti1.6Al0.4(PO4)2.9(VO4)0.1 NASICON-Type. Solid State Phenomena, 290: 60–64.
DOI: 10.4028/www.scientific.net/ssp.290.60
Google Scholar
[30]
Key, B., Schroeder, D. J, Ingram, B. J., & Vaughey, J. T. (2012). Soluble-based synthesis and characterisation of lithium-ion conducting phosphate ceramics for lithium metal batteries. Chemistry of Materials, 24(2): 287 - 293
DOI: 10.1021/cm202773d
Google Scholar
[31]
Wang, Q. H., Liu, L., Zhao, B. J., Zhang, L., Xiao, X., Yan, H., Xu, G. L., Ma, L., Liu, Y. (2021). Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3. Electrochimica Acta, 399: 1 – 11.
DOI: 10.1016/j.electacta.2021.139367
Google Scholar
[32]
Guo, Y., Zhao, E., & Li, J. (2024). Superior ionic conductivity of W-doped NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of the European Ceramic Society, 44(12), 7081–7091.
DOI: 10.1016/j.jeurceramsoc.2024.05.005
Google Scholar
[33]
Gunamony, J., Walle, K. Z., & Kotobuki, M. (2024). Influence of mixing technique on properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte prepared by the solid-state reaction A comparison of dry 3D mixing technique with wet ball-milling, Solid State Ionics, 410, 1 – 10.
DOI: 10.1016/j.ssi.2024.116528
Google Scholar
[34]
Sohib, A., Karunawan, J., Sundari, C.D., Floweri, O., & Iskandar, F. (2022). Rietveld study on the effect of pelletizing and sintering towards the structural evolution of Li1.3Al0.3Ti1.7(PO4)3. Journal of Physics: Conference Series, 1 – 8.
DOI: 10.1088/1742-6596/2243/1/012044
Google Scholar
[35]
Tolganbek, N., Yerkinbekova, Y., Kahirullin, A., Bakenov, Z., Kanamura, K., & Mentbayeva, A. (2021). Enhancing purity and ionic conductivity of NASICON-typed Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceramics International. 47(13): 18188 – 18195.
DOI: 10.1016/j.ceramint.2021.03.137
Google Scholar
[36]
Attia, A., Wang, Q., Huang, X., & Yang, Y. (2012). Titanium phosphates as positive electrode in lithium-ion batteries: Composition, phase purity and electrochemical performance. Journal of Solid State Electrochemistry, 16, 1461–1471.
DOI: 10.1007/s10008-011-1543-0
Google Scholar
[37]
Vijayan, L., & Govindaraj, G. (2011). Structural and electrical properties of high energy ball-milled NASICON type Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 ceramics. Journal of Physics and Chemistry of Solids, 72, 613–619.
DOI: 10.1016/j.jpcs.2011.02.001
Google Scholar
[38]
Biao, W., Xi-shuang, L., Feng-min, L. I. U., Tie-gang, Z., Chun, Z., Ge-yu, L. U., & Bao-fu, Q. (2009). Synthesis and Characterization of NASICON Nanoparticles by Sol-gel Method. Chem. Res. Chinese Universities, 25, 13–16.
Google Scholar
[39]
Mustaffa, N. A., Adnan, S. B. R. S., Sulaiman, M., & Mohamed, N. S. (2014). Low temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol-gel method. Ionics, 21, 955–965.
DOI: 10.1007/s11581-014-1257-2
Google Scholar
[40]
Bih, H., Bih, L., Manoun, B., Azdouz, M., Benmokhtar, M., Lazor, S. P. (2009). Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature. Journal of Molecular Structure, 936, 147–155
DOI: 10.1016/j.molstruc.2009.07.035
Google Scholar
[41]
Bushiri, M. J., Antony, C. J., & Aatiq, A. (2008). Raman and FTIR studies of the structural aspects of Nasicon-type crystals; AFeTi(PO4)3 [A = Ca, Cd], Journal of Physics Chemistry Solid, .69 1985 –1989.
DOI: 10.1016/j.jpcs.2008.02.008
Google Scholar
[42]
Salah, A. A., Jozwiak, P., Zaghib, K., Garbarczyk, J., Gendron, F., Mauger, A., C. M. Julien, C. M.(2006). FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries, Spectrochim. Acta Part A Molecular Biomolecular Spectroscopy, 65, 1007–1013
DOI: 10.1016/j.saa.2006.01.019
Google Scholar
[43]
Taveri, G., Güneren, A., Barlog, M., Hnatko, M., Zhukova, I., Netriova, Z., Simon, E., Micusik, M., Mikolasek, M., & Karkova, H. (2024). Understanding the benefits of Al3+-doping on NaSICONs explained through an out-of-the-scheme isovalent substitution of Fe3+ in Na3Fe2(PO4)3 series. Journal of Power Sources, 592, 1 -12.
DOI: 10.2139/ssrn.4481020
Google Scholar
[44]
Vinoth Rathan, S., & Govindaraj, G. (2010). Thermal and electrical relaxation studies in Li4+xTixNb1-xP3O12 (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sciences, 12, 730–735.
DOI: 10.1016/j.solidstatesciences.2010.02.030
Google Scholar
[45]
Devi, R. S., Venckatesh, D. R., & Sivaraj, D. R. (2014). Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique. International Journal of Innovative Research in Science, Engineering and Technology, 3, 15206–15211.
DOI: 10.15680/ijirset.2014.0308020
Google Scholar
[46]
Antony, C. J., Aatiq, A., Panicker, C. Y., Bushiri, M. J., Varghese, H. T., & Manojkumar, T. K. (2011). FTIR and FT-Raman study of Nasicon type phosphates, ASnFe(PO)4 [A = Na2, Ca, Cd]. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 78, 415–419
DOI: 10.1016/j.saa.2010.11.003
Google Scholar
[47]
Savitha, T., Selvasekarapandian, S., Ramya, C. S., Bhuvaneswari, M. S., Hirankumar, G., Baskaran, R., & Angelo, P. C. (2006). Structural and ionic transport properties of Li2AlZr[PO4]3. Journal of Power Sources, 157, 533–536.
DOI: 10.1016/j.jpowsour.2005.07.071
Google Scholar
[48]
Chakraborty, A., Thirupathi, R., Bhattacharyya, S., Singh, K., & Omar, S. (2023). Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries. Journal of Power Sources, 572, 1 – 15.
DOI: 10.1016/j.jpowsour.2023.233092
Google Scholar
[49]
Ferrer-Nicomedes, S., Mormeneo-Segarra, A., Vicente-Agut, N., & Barba-Juan, A. (2023). Introducing an ionic conductive matrix to the cold-sintered Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte to enhance the electrical properties. Journal of Power Sources, 581, 1 – 9.
DOI: 10.1016/j.jpowsour.2023.233494
Google Scholar
[50]
Singh, K., Chakraborty, A., Thirupathi, R. (2022). Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries. Ionics 28, 5289–5319
DOI: 10.1007/s11581-022-04765-3
Google Scholar