Thermal Behaviour of Ta-Doped LATP NASICON-Type Compounds

Article Preview

Abstract:

The lithium aluminium titanium tantalum phosphates compounds Li1+xAlxT2-x-yTay(PO4)3 (LATTaP) with different compositions (x = 0.3; 0.02 ≤ y ≤ 0.05) were synthesized using a solid-state synthesis approach. The synthesized samples were characterized through various methods. TGA/DTG results indicate the thermal stability and complete breakdown of the stoichiometric compositions. This ensures LATTaP solid electrolytes remain stable under battery cycling, high-temperature environments, and battery applications. This was corroborated by the FTIR findings, which showed the total decomposition of volatile substances, including water molecules, CO2, and HN3; the wave bands associated with hydroxyl or carboxylic compounds were completely absent, with only the bands corresponding to the vibration of the PO4 ionic group detected. This identifies chemical bonding, confirming the stability of the phosphate framework which determines structural integrity for long-term battery cycling without material degradation. The samples were successfully produced with an R-3c space group for structural characterization, assuming a hexagonal crystal structure, as referenced in the ICSD database 98-006-9677. XRD analysis demonstrated the presence of a single-phase NASICON-type crystal structure, which is essential for high ionic conductivity. The findings showed that the thermal properties of the materials are important to identify proper applicability of the material as a solid electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

145-156

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shahid, H. bin, Nasir, K., Ahmad, H., Ali, G., Bashir, S., & Quazi, M. M. (2024). Co-doping strategies for advanced solid-state electrolytes with lithium salt: a study on the structural and electrochemical properties of LATP. Materials Research Express, 11(5): 1-13.

DOI: 10.1088/2053-1591/ad431c

Google Scholar

[2] Zhang, L., Dai, Y., Li, C., Dang, Y., Zheng, R., Wang, Z., Wang, Y., Cui, Y., Arandiyan, H., Shao, Z., Sun, H., Zhuang, Q., & Liu, Y. (2024). Recent advances in electrochemical impedance spectroscopy for solid-state batteries. Energy Storage Materials, 69: 1-38.

DOI: 10.1016/j.ensm.2024.103378

Google Scholar

[3] Kang, J., Guo, X., Gu, R., Tang, Y., Hao, H., Lan, Y., Jin, L., & Wei, X. (2023). Effectof boron-based glass additives on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of Alloys and Compounds, 941: 1 - 9.

DOI: 10.1016/j.jallcom.2023.168857

Google Scholar

[4] Jun, K., Sun, Y., Xiao, Y., Xiao, Y., Zeng, Y., Kim, R., Kim, H., Miara, L. J., Lim, D., Wang, Y. & Ceder, G. (2022). Lithium superionic conductors with corner-sharing frameworks. Nature Materials, 21: 924–931.

DOI: 10.1038/s41563-022-01222-4

Google Scholar

[5] Ouyang, B., Wang, J., He, T., Bartel, C. J., Huo, H., Wang, Y., Lacivita, V., Kim, H., & Ceder, G. (2021). Synthetic accessibility and stability rules of NASICONs. Nature Communications, 12(1): 1 - 11

DOI: 10.1038/s41467-021-26006-3

Google Scholar

[6] Wang, S., Fu, J., Liu, Y., Saravanan, R. S., Luo, J., Deng, S., Sham, T. K., Sun, X., & Mo, Y. (2023). Design principles for sodium superionic conductors. Nature Communications, 14(1): 1-11.

DOI: 10.1038/s41467-023-43436-3

Google Scholar

[7] Zallocco, V. M., Freitas, J. M., Bocchi, N., & Rodrigues, A. C. M. (2022). Electro-chemical stability of a NASICON solid electrolyte from the lithium aluminum germanium phosphate series. Solid State Ionics, 378: 1 - 7.

DOI: 10.1016/j.ssi.2022.115888

Google Scholar

[8] Rao, Y. B., Bharathi, K. K., & Patro, L. N. (2021). Review on the synthesis and doping strategies in enhancing the Na ion conductivity of Na3Zr2Si2PO12 (NASICON) based solid electrolytes. Solid State Ionics. 366–367.

DOI: 10.1016/j.ssi.2021.115671

Google Scholar

[9] Jalalian-Khakshou, A., Phillips, C. O., Jackson, L., Dunlop, T. O., Margadonna, S., & Deganello, D. (2020). Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity. Journal of Materials Science, 55(6): 2291 - 2302.

DOI: 10.1007/s10853-019-04162-8

Google Scholar

[10] Yang, Z., Tang, B., Xie, Z. & Zhou, Z. (2021). NASICON-Type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries. ChemElectroChem, 8, 1035–1047.

DOI: 10.1002/celc.202001527

Google Scholar

[11] Deng, Z., Sai Gautam, G., Kolli, S. K., Chotard, J. N., Cheetham, A. K., Masquelier, C., & Canepa, P. (2020). Phase behaviour in rhombohedral NaSiCON electrolytes and electrodes, Chemistry of Materials, 32(18):7908 - 7920.

DOI: 10.1021/acs.chemmater.0c02695

Google Scholar

[12] Yang, H., & Wu, N. (2022). Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review, Energy Science and Engineering. 10 (5): 1643 – 1671.

DOI: 10.1002/ese3.1163

Google Scholar

[13] Yang, Z., Yuan, H., Zhou, C., Wu, Y., Tang, W., Sang, S., & Liu, H. (2020). Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery, Chemical Engineering Journal. 392: 1 – 7

DOI: 10.1016/j.cej.2019.123650

Google Scholar

[14] Ghafari, M., Sanaee, Z., Babaei, A., & Mohajerzadeh, S. (2023). Realization of high-performance room temperature solid state Li-metal batteries using a LiF/PVDF-HFP composite membrane for protecting an LATP ceramic electrolyte. Journal of Materials Chemistry A, 11: 7605–7616.

DOI: 10.1039/d3ta00331k

Google Scholar

[15] Li, Y., Deng, N., Wang, H., Zeng, Q., Luo, S., Jin, Y., Li, Q., Kang, W., & Cheng, B. (2023). Latest progresses and the application of various electrolytes in high-performance solid-state lithium-sulfur batteries. In Journal of Energy Chemistry, 82: 170–197.

DOI: 10.1016/j.jechem.2023.03.045

Google Scholar

[16] Chen, R., Yao, C., Yang, Q., Pan, H., Yu, X., Zhang, K., & Li, H. (2021). Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. ACS Applied Materials and Interfaces, 13(16), 18743–18749.

DOI: 10.1021/acsami.1c01246

Google Scholar

[17] Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L., & Rupp, J. L. (2021). Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Advance Energy Materials, 11: 1–63.

DOI: 10.1002/aenm.202002689

Google Scholar

[18] Miao, X., Wang, H., Sun, R., Wang, C., Zhang, Z., Li, Z., & Yin, L. (2020). Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries, Energy Environ. Sci. (13): 3780–3822

DOI: 10.1039/d0ee01435d

Google Scholar

[19] Zhu, J., Zhao, J., Xiang, Y., Lin, M., Wang, H., Zheng, B., He, H., Wu, Q., Huang, J. Y., & Yang, Y. (2020). Chemomechanical Failure Mechanism Study in NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries, Chemical Materials, 32: 4998–5008.

DOI: 10.1021/acs.chemmater.9b05295

Google Scholar

[20] Oksuzoglu, F., Ates, S., Ozkendir, O. M., Celik, G., Eker, Y. R., & Baveghar, H. (2024). Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method. Ceramics International, 50(17), 31435 - 31441.

DOI: 10.1016/j.ceramint.2024.05.450

Google Scholar

[21] Pu, X., Cheng, X., Yan, Q., Lin, Y., Yan, R., Yang, R., & Zhu, X. (2024). NASICON-type Ta5+ substituted LiZr2(PO4)3 with improved ionic conductivity as a prospective solid electrolyte. Ceramics International, 50(6), 9007 - 9015.

DOI: 10.1016/j.ceramint.2023.12.214

Google Scholar

[22] Wang, Q., Bai, N., Wang, Y., He, X., Zhang, D., Li, Z., Sun, Q., Sun, H., Wang, B., Wang, G., & Fan, L. Z. (2024). Optimization and progress of interface construction of ceramic oxide solid-state electrolytes in Li-metal batteries. In Energy Storage Materials, 71: 1-16.

DOI: 10.1016/j.ensm.2024.103589

Google Scholar

[23] Jetybayeva, A., Aaron, D. S., Belharouak, I., & Mench, M. M. (2023). Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries. Journal of Power Sources, 566:1-22.

DOI: 10.1016/j.jpowsour.2023.232914

Google Scholar

[24] Zhang, L., Liu, Y., You, Y., Vinu, A., & Mai, L. (2023). NASICONs‐type solid‐state electrolytes: The history, physicochemical properties, and challenges. Interdisciplinary Materials, 2(1): 91–110

DOI: 10.1002/idm2.12046

Google Scholar

[25] Luo, Y., Jiang, X., Yu, Y., Liu, L., Lin, X., Wang, Z., Han, L., Luo, Z., & Lu, A. (2023). Enhancement of electrical properties of LiTi2(PO4)3 ceramics via trivalent cation doping and microstructure regulation strategies. Solid State Ionics, 390: 1-2.

DOI: 10.1016/j.ssi.2022.116111

Google Scholar

[26] Nkala, G. C., Masina, S., Billing, C., Forbes, R. P., & Billing, D. G. (2021). The role of Al3+, Dy3+ co-doping on the structure-property correlations in NASICON-type LiTi2(PO4)3 solid-state electrolytes. Acta Crystallographica Section A: Foundations and Advances, 77: 1-112.

DOI: 10.1107/s0108767321086128

Google Scholar

[27] Lee, J., Wook Lee, Y., Shin, S., Ho Shin, T., & Lee, S. (2023). Interface characteristics of Li1+xAlxTi2-x(PO4)3 solid electrolyte with Ta-doping for All-Solid-State batteries. Inorganic Chemistry Communications, 154: 1-6.

DOI: 10.1016/j.inoche.2023.110895

Google Scholar

[28] Zangina, T., Hassan, J., Azis, R. S., Matori, K. A., Ahmadu, U., Ndikilar, C. E., & Musa, M. A. (2018). Thermal Behavior of Al Substituted LiTi2(PO4)3 Nasicon compounds. Solid State Science and Technology, 26(2): 17-23

Google Scholar

[29] Zangina, T., Hassan, J., Azis, R. S., Matori, K. A., Ndikilar, C. E., Nasir, M. M., & Suleiman, A.B. (2019). Structure, Thermal and Conductivity Behavior of Vanadium Substituted Li1.4Ti1.6Al0.4(PO4)2.9(VO4)0.1 NASICON-Type. Solid State Phenomena, 290: 60–64.

DOI: 10.4028/www.scientific.net/ssp.290.60

Google Scholar

[30] Key, B., Schroeder, D. J, Ingram, B. J., & Vaughey, J. T. (2012). Soluble-based synthesis and characterisation of lithium-ion conducting phosphate ceramics for lithium metal batteries. Chemistry of Materials, 24(2): 287 - 293

DOI: 10.1021/cm202773d

Google Scholar

[31] Wang, Q. H., Liu, L., Zhao, B. J., Zhang, L., Xiao, X., Yan, H., Xu, G. L., Ma, L., Liu, Y. (2021). Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3. Electrochimica Acta, 399: 1 – 11.

DOI: 10.1016/j.electacta.2021.139367

Google Scholar

[32] Guo, Y., Zhao, E., & Li, J. (2024). Superior ionic conductivity of W-doped NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of the European Ceramic Society, 44(12), 7081–7091.

DOI: 10.1016/j.jeurceramsoc.2024.05.005

Google Scholar

[33] Gunamony, J., Walle, K. Z., & Kotobuki, M. (2024). Influence of mixing technique on properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte prepared by the solid-state reaction A comparison of dry 3D mixing technique with wet ball-milling, Solid State Ionics, 410, 1 – 10.

DOI: 10.1016/j.ssi.2024.116528

Google Scholar

[34] Sohib, A., Karunawan, J., Sundari, C.D., Floweri, O., & Iskandar, F. (2022). Rietveld study on the effect of pelletizing and sintering towards the structural evolution of Li1.3Al0.3Ti1.7(PO4)3. Journal of Physics: Conference Series, 1 – 8.

DOI: 10.1088/1742-6596/2243/1/012044

Google Scholar

[35] Tolganbek, N., Yerkinbekova, Y., Kahirullin, A., Bakenov, Z., Kanamura, K., & Mentbayeva, A. (2021). Enhancing purity and ionic conductivity of NASICON-typed Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceramics International. 47(13): 18188 – 18195.

DOI: 10.1016/j.ceramint.2021.03.137

Google Scholar

[36] Attia, A., Wang, Q., Huang, X., & Yang, Y. (2012). Titanium phosphates as positive electrode in lithium-ion batteries: Composition, phase purity and electrochemical performance. Journal of Solid State Electrochemistry, 16, 1461–1471.

DOI: 10.1007/s10008-011-1543-0

Google Scholar

[37] Vijayan, L., & Govindaraj, G. (2011). Structural and electrical properties of high energy ball-milled NASICON type Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 ceramics. Journal of Physics and Chemistry of Solids, 72, 613–619.

DOI: 10.1016/j.jpcs.2011.02.001

Google Scholar

[38] Biao, W., Xi-shuang, L., Feng-min, L. I. U., Tie-gang, Z., Chun, Z., Ge-yu, L. U., & Bao-fu, Q. (2009). Synthesis and Characterization of NASICON Nanoparticles by Sol-gel Method. Chem. Res. Chinese Universities, 25, 13–16.

Google Scholar

[39] Mustaffa, N. A., Adnan, S. B. R. S., Sulaiman, M., & Mohamed, N. S. (2014). Low temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol-gel method. Ionics, 21, 955–965.

DOI: 10.1007/s11581-014-1257-2

Google Scholar

[40] Bih, H., Bih, L., Manoun, B., Azdouz, M., Benmokhtar, M., Lazor, S. P. (2009). Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature. Journal of Molecular Structure, 936, 147–155

DOI: 10.1016/j.molstruc.2009.07.035

Google Scholar

[41] Bushiri, M. J., Antony, C. J., & Aatiq, A. (2008). Raman and FTIR studies of the structural aspects of Nasicon-type crystals; AFeTi(PO4)3 [A = Ca, Cd], Journal of Physics Chemistry Solid, .69 1985 –1989.

DOI: 10.1016/j.jpcs.2008.02.008

Google Scholar

[42] Salah, A. A., Jozwiak, P., Zaghib, K., Garbarczyk, J., Gendron, F., Mauger, A., C. M. Julien, C. M.(2006). FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries, Spectrochim. Acta Part A Molecular Biomolecular Spectroscopy, 65, 1007–1013

DOI: 10.1016/j.saa.2006.01.019

Google Scholar

[43] Taveri, G., Güneren, A., Barlog, M., Hnatko, M., Zhukova, I., Netriova, Z., Simon, E., Micusik, M., Mikolasek, M., & Karkova, H. (2024). Understanding the benefits of Al3+-doping on NaSICONs explained through an out-of-the-scheme isovalent substitution of Fe3+ in Na3Fe2(PO4)3 series. Journal of Power Sources, 592, 1 -12.

DOI: 10.2139/ssrn.4481020

Google Scholar

[44] Vinoth Rathan, S., & Govindaraj, G. (2010). Thermal and electrical relaxation studies in Li4+xTixNb1-xP3O12 (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sciences, 12, 730–735.

DOI: 10.1016/j.solidstatesciences.2010.02.030

Google Scholar

[45] Devi, R. S., Venckatesh, D. R., & Sivaraj, D. R. (2014). Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique. International Journal of Innovative Research in Science, Engineering and Technology, 3, 15206–15211.

DOI: 10.15680/ijirset.2014.0308020

Google Scholar

[46] Antony, C. J., Aatiq, A., Panicker, C. Y., Bushiri, M. J., Varghese, H. T., & Manojkumar, T. K. (2011). FTIR and FT-Raman study of Nasicon type phosphates, ASnFe(PO)4 [A = Na2, Ca, Cd]. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 78, 415–419

DOI: 10.1016/j.saa.2010.11.003

Google Scholar

[47] Savitha, T., Selvasekarapandian, S., Ramya, C. S., Bhuvaneswari, M. S., Hirankumar, G., Baskaran, R., & Angelo, P. C. (2006). Structural and ionic transport properties of Li2AlZr[PO4]3. Journal of Power Sources, 157, 533–536.

DOI: 10.1016/j.jpowsour.2005.07.071

Google Scholar

[48] Chakraborty, A., Thirupathi, R., Bhattacharyya, S., Singh, K., & Omar, S. (2023). Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries. Journal of Power Sources, 572, 1 – 15.

DOI: 10.1016/j.jpowsour.2023.233092

Google Scholar

[49] Ferrer-Nicomedes, S., Mormeneo-Segarra, A., Vicente-Agut, N., & Barba-Juan, A. (2023). Introducing an ionic conductive matrix to the cold-sintered Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte to enhance the electrical properties. Journal of Power Sources, 581, 1 – 9.

DOI: 10.1016/j.jpowsour.2023.233494

Google Scholar

[50] Singh, K., Chakraborty, A., Thirupathi, R. (2022). Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries. Ionics 28, 5289–5319

DOI: 10.1007/s11581-022-04765-3

Google Scholar