Oxidation Resistance Evaluation at High Temperature of Ni5Al and Fe13Cr Coatings on an AISI 321 Stainless Steel Preparing by Plasma Spray Method

Article Preview

Abstract:

This study examines the application of depositing Ni5Al and Fe13Cr alloy coatings onto AISI 321 stainless steel substrates and evaluates their mechanical and oxidative resistance qualities. The Ni5Al coating was found to have a hardness value that is 38% greater than the Fe13Cr coating, as determined by Micro-Vickers hardness testing. Additionally, the Ni5Al coating displayed a more homogenous microstructure. The cyclic oxidation measurements provide evidence of the better performance of the Ni5Al coating in elevated temperatures. The better performance can be attributed mainly to the presence of Al2O3 as the predominant oxide, which is well-known for its exceptional heat resistance and protective properties. However, the overall performance of the Fe13Cr coating is negatively impacted by the presence of Fe2O3, even though there are other favorable oxides such as Cr2O3, NiCr2O, NiO, and Mn2Co3. The Fe2O3 presence greatly diminishes the oxidative stability of the Fe13Cr coating. The results emphasize the capability of Ni5Al as a highly efficient coating material for applications that require exceptional hardness and strong resistance to oxidation. This indicates that it is suitable for high-temperature industrial applications where durability and performance are crucial.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

75-79

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Yu, C. Xiao, W. Jiang, W. Lei, S. Ni, M. Song, Surface & Coatings Technology 483 (2024) 130753.

Google Scholar

[2] H. Wang, M. Paidar, N.K. Kumar, H.M.S. ElDin, S. Kannan, S. Abdullaev, S. Mehrez, Vacuum 222 (2024) 113072.

DOI: 10.1016/j.vacuum.2024.113072

Google Scholar

[3] N. Birks, G.H. Meier, F.S. Pettit, Cambridge University Press, 2006.

Google Scholar

[4] H.M. Tehrani, R.S. Razavi, M. Erfanmanesh, S.H. Hashemi, M. Barekat, Optics and Laser Technology 127 (2020) 106138.

DOI: 10.1016/j.optlastec.2020.106138

Google Scholar

[5] S. Nejati, S.P. Ali, R. Tavangar, Surface & Coatings Technology 482 (2024) 130747.

Google Scholar

[6] S. Babu, S.K. Panigrahi, G.D. Janaki Ram, P.V. Venkitakrishnan, R.S. Kumar, Journal of Materials Processing Tech. 266 (2019) 155–164.

DOI: 10.1016/j.jmatprotec.2018.10.034

Google Scholar

[7] J. Dabrowa, G. Cie's Lak, M. Stygar, M. Zajusz, M. Jawanska, A. Gil, J. Jedlinski, K. Mroczka, K. Matsuda, T. Kulik, M. Danielewski, Oxid. Metals 96 (2021) 307–321.

DOI: 10.1007/s11085-021-10048-5

Google Scholar

[8] D. Aryanto, H. Hariyati, P.K. Karo, A.S. Wismogroho, W.B. Widayatno, A. Basyir, N. Darsono, S. Herbirowo, N.T. Rochman, A. Noviyanto, Materials Chemistry and Physics 261 (2021) 124250.

DOI: 10.1016/j.matchemphys.2021.124250

Google Scholar

[9] L. Liu, J. Xu, Vacuum 85 (2011) 687–700.

Google Scholar

[10] A. Rasooli, M.S. Safavi, M.K. Hokmabad, Ceram. Int. 44 (2018) 6466–6473

Google Scholar

[11] S. Kumar, M. Kumar, A. Handa, Mater. Res. Express. 6 (2019), 125533.

Google Scholar

[12] M.R. Hajideh, M. Farahani, M. Pakravan, A. Shahmirzalo, Heliyon 5 (2019) e01920.

DOI: 10.1016/j.heliyon.2019.e01920

Google Scholar

[13] L. Zhang, M. Mahrukh, D. Wang, X.J. Liao, X.T. Luo, C.J. Li, Journal of Materials Processing Tech. 319 (2023) 118088.

Google Scholar

[14] G. Xu, K. Wang, H. Li, J. Ju, H. Jiang, Q. Wang, Materials Characterization 179 (2021) 111372

Google Scholar

[15] D.V. Cong, D.W. Lee, T.S. Yoon, J.C. Kim, International Journal of Refractory Metals and Hard Materials 120 (2024) 106578.

Google Scholar

[16] Z.L. Wang, Q. Li, X.R. Han, C. Ju, Q.H. Song, J.J. Li, Z.P. Sun, Y.F, Zhang, Digest Journal of Nanomaterials and Biostructures. Vol. 16, No. 4, 2021, pp.1295-1311

Google Scholar

[17] Oerlikon Metco, (2015), Metcoloy 2. DSMTS-0032.5-FeCr (Cr ≤ 20%) Stainless Steel Thermal Spray Wires. Retrieved May 9, 2024 from https://parmex.com.mx/ show_catalogue_pdf/159544/1

Google Scholar