Feasibility of Utilizing a Thermoplastic Elastomer Seal Made from a Natural Rubber Blend with Recycled Polypropylene from Packaging Waste

Article Preview

Abstract:

This study explores the feasibility of utilizing a thermoplastic elastomer seal made from a blend of rubber and recycled polypropylene (PP) derived from disposable plastic bottles. Thermoplastic elastomers develop by blending natural rubber (NR), epoxidized natural rubber (ENR), and maleated natural rubber (MNR) with PP in a 60/40 rubber-to-PP ratio. The results indicate that NR exhibits superior tensile strength, tear resistance, and compression set compared to ENR and MNR, attributed to NR's crystallization upon stretching and its inherent high elasticity. Both NR and ENR demonstrated good ozone resistance with no observed cracking, while MNR showed the lowest resistance, evidenced by visible cracks after the ozone explosion. NR emerged as the most suitable rubber for thermoplastic elastomer preparation, outperforming ENR and MNR. Comparative analysis between the prototype and commercial products revealed that the prototype's mechanical properties, ozone resistance, and thermal degradation resistance were largely comparable to those of the commercial counterparts. However, to improve flame resistance, further development is needed, particularly through the incorporation of flame-retardant additives.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 371)

Pages:

45-56

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Kalita, B. Parameswaran, N.K. Singha, Thermoplastic Elastomers, in: R. E. Kirk, D. F. Othmer, (Eds.), Kirk‐Othmer Encyclopedia of Chemical Technology, Wiley, (2022) 1-39.

DOI: 10.1002/0471238961.2008051808151204.a01.pub3

Google Scholar

[2] N. Evode, S. A. Qamar, M. Bilal, D. Barceló, H. M. Iqbal, Plastic waste and its management strategies for environmental sustainability, Case Stud. Chem. Environ. Eng. 4 (2021) 100142.

DOI: 10.1016/j.cscee.2021.100142

Google Scholar

[3] S. Satapathy, A. Nag, G.B. Nando, Thermoplastic elastomers from waste polyethylene and reclaim rubber blends and their composites with fly ash, Process Saf. Environ. Prot. 88 (2010) 131-141.

DOI: 10.1016/j.psep.2009.12.001

Google Scholar

[4] Y.-H. Wang, Y.-K. Chen, D. Rodrigue, Production of Thermoplastic Elastomers Based on Recycled PE and Ground Tire Rubber: Morphology, Mechanical Properties and Effect of Compatibilizer Addition. Int. Polym. Process. 33 (2018) 525-534.

DOI: 10.3139/217.3544

Google Scholar

[5] M. T. Hossain, M. A. Shahid, N. Mahmud, A. Habib, M. M. Rana, S. A. Khan, M. D. Hossain, Research and application of polypropylene: a review, Discov Nano. 19 (2024) 2.

DOI: 10.1186/s11671-023-03952-z

Google Scholar

[6] R.K. Ganguly, S.K. Chakraborty, Plastic waste management during and post Covid19 pandemic: Challenges and strategies towards circular economy, Heliyon. 10 (2024) e25613.

DOI: 10.1016/j.heliyon.2024.e25613

Google Scholar

[7] C. Bendjaouahdou, S. Bensaad, Aging studies of a polypropylene and natural rubber blend, Int. J. Ind. Chem. 9 (2018) 345-352.

DOI: 10.1007/s40090-018-0163-2

Google Scholar

[8] A. Belhaoues, S. Benmesli, F. Riahi, Compatibilization of natural rubber–polypropylene thermoplastic elastomer blend, J. Elastomers Plast. 52 (2020) 728-746.

DOI: 10.1177/0095244319891231

Google Scholar

[9] S.T. Nair, S.C. George, N. Kalarikkal, S. Thomas, Enhanced mechanical and thermal performance of multiwalled carbon nanotubes-filled polypropylene/natural rubber thermoplastic elastomers, New J. Chem. 45 (2021) 4963-4976.

DOI: 10.1039/d0nj05437b

Google Scholar

[10] N. Chandran, A. Sivadas, S. Thomas, Interfacial interaction in polypropylene-natural rubber blends: role of natural rubber on morphological, rheological, and mechanical evolution, J. Polym. Res. 29 (2021) 24.

DOI: 10.1007/s10965-021-02873-8

Google Scholar

[11] L. Saengdee, P. Daniel, T. Amornsakchai, A. Chaiyanurakkul, P. Phinyocheep, Thermoplastic vulcanizates derived from modified natural rubbers and polypropylene, Iran. Polym. J. 31 (2022) 287-299.

DOI: 10.1007/s13726-021-00998-7

Google Scholar

[12] M.D. Shafiq, H. Ismail, The effect of epoxidized vegetable oil and phthalic anhydride as compatibilizers on properties of rubber seed shell/polypropylene composites, Iran. Polym. J. 30 (2021) 547-557.

DOI: 10.1007/s13726-021-00911-2

Google Scholar

[13] P. Faibunchan, S. Pichaiyut, W. Chueangchayaphan, C. Kummerlöwe, N. Venneman, C. Nakason, Influence type of natural rubber on properties of green biodegradable thermoplastic natural rubber based on poly(butylene succinate), Polym. Adv. Technol. 30 (2019) 1010-1026.

DOI: 10.1002/pat.4534

Google Scholar

[14] I. P. Mahendra, B. Wirjosentono, T. Tamrin, H. Ismail, J. A. Mendez, V. Causin, The effect of nanocrystalline cellulose and TEMPO-oxidized nanocellulose on the compatibility of polypropylene/cyclic natural rubber blends, J. Thermoplast. Compos. Mater. 35 (2022) 2146-2161.

DOI: 10.1177/0892705720959129

Google Scholar

[15] X. Ren, C. S. Barrera, J. L. Tardiff, K. Cornish, Sustainable Epoxidized Guayule Natural Rubber, Blends and Composites with Improved Oil Resistance and Greater Stiffness, Mater. 15 (2022) 3946.

DOI: 10.3390/ma15113946

Google Scholar

[16] S. Chuayjujit, S. Sakulkijpiboon, P. Potiyaraj, Preparation of Thermoplastic Elastomer from Epoxidised Natural Rubber and Polystyrene, Polym. Polym. Compos. 18 (2010) 139-144.

DOI: 10.1177/096739111001800303

Google Scholar

[17] R. Zhang, Y. Zhu, J. Zhang, W. Jiang, J. Yin, Effect of the initial maleic anhydride content on the grafting of maleic anhydride onto isotactic polypropylene, J. Polym. Sci., Part A: Polym. Chem. 43 (2005) 5529-5534.

DOI: 10.1002/pola.21038

Google Scholar

[18] N. Lopattananon, A. Walong, A. Kaesaman, T. Sakai, Mechanical, Thermal and Fire Retardant Characteristics of NR/PP/ATH Thermoplastic Vulcanizates, Walailak J. Sci. Technal. 16 (2018) 723-737.

DOI: 10.48048/wjst.2019.4436

Google Scholar

[19] L. Dutra, M.N. de Souza, J.C. Pinto, Preparation of Polymer Microparticles through Nonaqueous Suspension Polycondensations. Part II—Effects of Operating Variables on Properties of Poly(butylene succinate), Macromol. React. Eng. 12 (2018) 1800039.

DOI: 10.1002/mren.201800039

Google Scholar

[20] L. H. Zhu, J. F. Sheng, Z. F. Guo, X. S. Ju, S. Li, Y. F. Chen, J. Luo, Properties of Polypropylene and Surface Modified Glass-Fibre Composites, Polym. Polym. Compos. 22 (2014) 381-386.

DOI: 10.1177/096739111402200403

Google Scholar

[21] D. Borah, S. Satokawa, S. Kato, T. Kojima, Characterization of chemically modified carbon black for sorption application, Appl. Surf. Sci. 10 (2008) 3049-3056.

DOI: 10.1016/j.apsusc.2007.10.053

Google Scholar