[1]
Krause-Rehberg, R., L., Hartmut S. Positron annihilation in semiconductors: defect studies. Springer Science & Business Media, 1999.
Google Scholar
[2]
Tuomisto, F., Makkonen, I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Reviews of Modern Physics, vol. 85, no. 4, pp.1583-1631, 2013.
DOI: 10.1103/revmodphys.85.1583
Google Scholar
[3]
Puska, M. J., Nieminen, R. M. Theory of positrons in solids and on solid surfaces. Reviews of modern Physics, vol. 66, no. 3, p.841, 1994, APS.
DOI: 10.1103/revmodphys.66.841
Google Scholar
[4]
Ferrell, R. A. Theory of positron annihilation in solids. Reviews of Modern Physics, vol. 28, no. 3, p.308, 1956, APS.
Google Scholar
[5]
Hautojärvi, P., Dupasquier, A., Manninen, M.J. Positrons in solids, vol. 12. Springer, 1979.[6] Boroński, E., Nieminen, R.M. Electron-positron density-functional theory. Physical Review B, vol. 34, no. 6, p.3820, 1986, APS.
DOI: 10.1103/physrevb.34.3820
Google Scholar
[7]
Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken, J.-M., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., et al. The Abinit project: Impact, environment and recent developments. Computer Physics Communications, vol. 248, p.107042, 2020, Elsevier.
Google Scholar
[8]
Gonze, X., Jollet, F., Araujo, F. A., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.-M., Bieder, J., Bokhanchuk, A., et al. Recent developments in the ABINIT software package. Computer Physics Communications, vol. 205, pp.106-131, 2016, Elsevier.
DOI: 10.1016/j.cpc.2016.04.003
Google Scholar
[9]
Bottin, F., Leroux, S., Knyazev, A., Zérah, G. Large-scale ab initio calculations based on three levels of parallelization. Computational Materials Science, vol. 42, no. 2, pp.329-336, 2008, Elsevier.
DOI: 10.1016/j.commatsci.2007.07.019
Google Scholar
[10]
Torrent, M., Jollet, F., Bottin, F., Zérah, G., Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. Computational Materials Science, vol. 42, no. 2, pp.337-351, 2008, Elsevier.
DOI: 10.1016/j.commatsci.2007.07.020
Google Scholar
[11]
Romero, A. H., Allan, D. C., Amadon, B., Antonius, G., Applencourt, T., Baguet, L., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., et al. ABINIT: Overview and focus on selected capabilities. The Journal of Chemical Physics, vol. 152, no. 12, 2020, AIP Publishing.
DOI: 10.1063/1.5144261
Google Scholar
[12]
Blöchl, P. E. Projector augmented-wave method. Physical Review B, vol. 50, no. 24, p.17953, 1994, APS.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[13]
Wiktor, J., Jomard, G., Torrent, M. Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions. Physical Review B, vol. 92, no. 12, p.125113, 2015, APS.
DOI: 10.1103/physrevb.92.125113
Google Scholar
[14]
Ehrenreich, H., Cohen, M. H. Self-consistent field approach to the many-electron problem. Physical Review, vol. 115, no. 4, p.786, 1959, APS.
DOI: 10.1103/physrev.115.786
Google Scholar
[15]
Wiktor, J., Jomard, G., Torrent, M., Bertolus, M. Electronic structure investigation of energetics and positron lifetimes of fully relaxed monovacancies with various charge states in 3 C-SiC and 6 H-SiC. Physical Review B-Condensed Matter and Materials Physics, vol. 87, no. 23, p.235207, 2013, APS.
DOI: 10.1103/physrevb.87.235207
Google Scholar
[16]
Holzwarth, N.A.W., Tackett, A.R., Matthews, G.E. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions. Computer Physics Communications, vol. 135, no. 3, pp.329-347, 2001, Elsevier.
DOI: 10.1016/s0010-4655(00)00244-7
Google Scholar
[17]
Goedecker, S., Teter, M., Hutter, J. Separable dual-space Gaussian pseudopotentials. Physical Review B, vol. 54, no. 3, p.1703, 1996, APS.
DOI: 10.1103/physrevb.54.1703
Google Scholar
[18]
Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters, vol. 77, no. 18, p.3865, 1996, APS.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[19]
Barbiellini, B., Puska, M. J., Torsti, T., Nieminen, R. M. Gradient correction for positron states in solids. Physical Review B, vol. 51, no. 11, p.7341, 1995, APS.
DOI: 10.1103/physrevb.51.7341
Google Scholar
[20]
Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations. Physical Review B, vol. 13, no. 12, p.5188, 1976, APS.[21] Dannefaer, S., Bretagnon, T., Kerr, D. Positron lifetime investigations of diamond films. Diamond and Related Materials, vol. 2, no. 12, pp.1479-1482, 1993, Elsevier.
DOI: 10.1016/0925-9635(93)90016-u
Google Scholar
[22]
Uedono, A., Fujii, S., Morishita, N., Itoh, H., Tanigawa, S., Shikata, S. Defects insynthesized and natural diamond probed by positron annihilation. Journal of Physics: Condensed Matter, vol. 11, no. 20, p.4109, 1999, IOP Publishing.
DOI: 10.1088/0953-8984/11/20/317
Google Scholar
[23]
Mäki, J.-M., Tuomisto, F., Kelly, C.J., Fisher, D., Martineau, P.M. Properties of optically active vacancy clusters in type IIa diamond. Journal of Physics: Condensed Matter, vol. 21, no. 36, p.364216, 2009, IOP Publishing.
DOI: 10.1088/0953-8984/21/36/364216
Google Scholar
[24]
Barbiellini, B., Genoud, P., Jarlborg, T. Calculation of positron lifetimes in bulk materials. Journal of Physics: Condensed Matter, vol. 3, no. 39, p.7631, 1991, IOP Publishing.
DOI: 10.1088/0953-8984/3/39/009
Google Scholar
[25]
Pu, A., Bretagnon, T., Kerr, D., Dannefaer, S. Positron annihilation investigation of vacancies in as-grown and electron-irradiated diamonds. Diamond and Related Materials, vol. 9, no. 8, pp.1450-1463, 2000, Elsevier.
DOI: 10.1016/s0925-9635(00)00264-8
Google Scholar
[26]
Kohlbach, I., Korff, B., Staab, T.E.M. (Meta-) stable phases and pre-Guinier-Preston zones in AlCu alloys constructed from ab initio relaxed atomic positions-Comparison to experimental methods. Physica Status Solidi (b), vol. 247, no. 9, pp.2168-2178, 2010, Wiley Online Library.
DOI: 10.1002/pssb.201046102
Google Scholar
[27]
Yang, Q., Hu, Z., Makkonen, I., Desgardin, P., Egger, W., Barthe, M.-F., Olsson, P. A combined experimental and theoretical study of small and large vacancy clusters in tungsten. Journal of Nuclear Materials, vol 571, p.154019, 2022, Elsevier.
DOI: 10.1016/j.jnucmat.2022.154019
Google Scholar
[28]
Bollmann, W. Crystal defects and crystalline interfaces. Springer Science & Business Media, 2012.
Google Scholar
[29]
Sangid, M. D., Sehitoglu, H., Maier, H. J., Niendorf, T. Grain boundary characterization and energetics of superalloys. Materials Science and Engineering: A, vol. 527, no. 26, pp.7115-7125, 2010, Elsevier.
DOI: 10.1016/j.msea.2010.07.062
Google Scholar
[30]
Cheng, J., Luo, J., Yang, K. Aimsgb: An algorithm and open-source python library to generate periodic grain boundary structures. Computational Materials Science, vol. 155, pp.92-103, 2018, Elsevier.
DOI: 10.1016/j.commatsci.2018.08.029
Google Scholar