Variability in FeB Pair Association Rates in Silicon under Ultrasound Loading: Effects of Acoustic Wave Types

Article Preview

Abstract:

Initially, this work briefly outlines how ultrasound can modify and characterize the defect system in semiconductors. Then, the study experimentally examines the effect of different types of acoustic waves on the association of FeB pairs in monocrystalline silicon. The results reveal that as the frequency of longitudinal waves increases, the ultrasound's effectiveness in accelerating the association rate decreases. Conversely, exciting transverse waves show the opposite trend. The study also assesses the potential to obtain a positron-annihilation response from the FeB complex in silicon, highlighting the advantages of conducting such measurements under ultrasound loading of the crystal.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

69-77

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ostapenko: Appl. Phys. A: Mater. Sci. Process. Vol. 69 (1999), p.225

Google Scholar

[2] L.V. Borkovska, M.P. Baran, N.O. Korsunska et al.: Phys. B Condens. Matter Vol. 340-342 (2003), p.258

Google Scholar

[3] A. El-Bahar, S. Stolyarova, A. Chack et al.: Phys. Status Solidi A Vol. 197 (2003), p.340

Google Scholar

[4] U. Ritter, P. Scharff, V.V. Kozachenko et al.: Chem. Phys. Lett. Vol. 467 (2008), p.77

Google Scholar

[5] T. Wosinski, A. Makosa and Z. Witczak: Semicond. Sci. Technol. Vol. 9 (1994), p. (2047)

Google Scholar

[6] I. Ostrovskii, N. Ostrovskaya, O. Korotchenkov and J. Reidy: IEEE Trans. Nucl. Sci. Vol. 52 (2005), p.3068

DOI: 10.1109/tns.2005.861476

Google Scholar

[7] O. Konoreva, Ya. Olikh, M. Pinkovska et al.: Superlattices Microstruct. Vol. 102 (2017), p.88

Google Scholar

[8] A.M. Gorb, O.A. Korotchenkov, O.Ya. Olikh et al.: Solid-State Electron. Vol. 165 (2020), 107712

Google Scholar

[9] A.M. Gorb, O.A. Korotchenkov, O.Ya Olikh and A.O. Podolian: IEEE Trans. Nucl. Sci. Vol. 57 (2010), p.1632

DOI: 10.1109/tns.2010.2047655

Google Scholar

[10] V. Litovchenko, V. Melnik and B. Romanjuk: Ukrainian Journal of Physics Vol. 60 (2015), p.64

Google Scholar

[11] B. Romanjuk, V. Kladko, V. Melnik et al.: Mater. Sci. Semicond. Process. Vol. 8 (2005), p.171

Google Scholar

[12] W. Wang, F. Huang, Y. Xia and A. Wang: J. Lumin. Vol. 128 (2008), p.199

Google Scholar

[13] S. Fujita, K. Kaneko, T. Ikenoue et al.: Phys. Status Solidi C. Vol. 11 (2014), p.1225

Google Scholar

[14] Ya.M. Olikh and M.D. Tymochko: Tech. Phys. Lett. Vol. 37 (2011), p.37

Google Scholar

[15] I. Ostrovskii, O. Korotchenkov, O. Olikh et al.: J. Opt. A: Pure Appl. Opt. Vol. 3 (2001), p. S82

Google Scholar

[16] I.A. Buyanova, S.S. Ostapenko, A.U. Savchuk and M.K. Sheinkman: Mater. Sci. Forum Vol. 143 (1993), p.1063

Google Scholar

[17] A.E. Belyaev, H.J. von Bardeleben, M.L. Fille et al.: Mater. Sci. Forum Vol. 143 (1993), p.1057

Google Scholar

[18] O.A. Korotchenkov and H.G. Grimmliss: Phys. Rev. B. Vol. 52 (1995), p.14598

Google Scholar

[19] O.Ya. Olikh, A.M. Gorb, R.G. Chupryna and O.V. Pristay-Fenenkov: J. Appl. Phys. Vol. 123 (2018), 161573

DOI: 10.1063/1.5001123

Google Scholar

[20] O. Olikh: Ultrasonics Vol. 56 (2015), p.545

Google Scholar

[21] B.N. Zaveryukhin, N.N. Zaveryukhina, R.A. Muminov and O.M. Tursunkulov: Tech. Phys. Lett. Vol. 28 (2002), p.207

DOI: 10.1134/1.1467277

Google Scholar

[22] V. Kuryliuk, A. Podolian and O. Korotchenkov: Cent. Eur. J. Phys. Vol. 8 (2009), p.65

Google Scholar

[23] Ya.M. Olikh and M.D. Tymochko: Superlattices Microstruct. Vol. 95 (2016), p.78

Google Scholar

[24] A.I. Vlasenko, Ya.M. Olikh and R.K. Savkina: Semiconductors Vol. 34 (2000), p.644[25] A.N. Gontaruk, D.V. Korbutyak, E.V. Korbut et al.: Tech. Phys. Lett. Vol. 24 (1999), p.608

Google Scholar

[26] K. Mitsumoto, M. Akatsu, S. Baba et al.: J. Phys. Soc. Jpn. Vol. 83 (2014), 034702

Google Scholar

[27] M.Yu. Seyidov, R.A. Suleymanov, A.P. Odrinsky and C. Kırbas: Phys. B Condens. Matter Vol. 497 (2016), p.86

Google Scholar

[28] I.V. Zhevstovskikh, I.B. Bersuker, V.V. Gudkov et al.: J. Appl. Phys. Vol. 119 (2016), 225108

Google Scholar

[29] J. Yi, H. Kong and C. Zhu: J. Alloys Compd. Vol. 474 (2009), p.38

Google Scholar

[30] O.A. Korotchenkov: Fizika i tekhnika poluprovodnikov Vol. 30 (1996), p.1274

Google Scholar

[31] I.V. Ostrovskii, O.A. Korotchenkov, R.M. Burbelo and H.G. Walther: Materials Science and Engineering: B Vol. 76 (2000), p.139

Google Scholar

[32] I.J. Fritz and T.M. Brennan: Semicond. Sci. Technol. Vol. 12 (1997), p.19

Google Scholar

[33] R. Krause-Rehberg and H.S. Leipner: Positron Annihilation in Semiconductors (Springer-Verlag, Berlin 1999).

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[34] I. Makkonen and F. Tuomisto: J. Appl. Phys. Vol. 135 (2024), 040901

Google Scholar

[35] F. Tuomisto and I. Makkonen: Rev. Mod. Phys. Vol. 85 (2013), p.1583

Google Scholar

[36] C. Möller, T. Bartel, F. Gibaja and K. Lauer: J. Appl. Phys. Vol. 116 (2014), p.024503

Google Scholar

[37] O. Olikh, V. Kostylyov, V. Vlasiuk et al.: J. Appl. Phys. Vol. 130 (2021), 235703

Google Scholar

[38] O. Olikh, V. Kostylyov, V. Vlasiuk et al.: J. Mater. Sci.: Mater. Electron. Vol. 33 (2022), p.13133

Google Scholar

[39] V.N. Pavlovich:Phys. Status Solidi B Vol. 180 (1993), p.97

Google Scholar

[40] V. Krevchik, R. Muminov and A. Yafasov: Phys. Status Solidi A Vol. 632 (1981), p. K159

Google Scholar

[41] W. Brandt: Appl. Phys. Vol. 5 (1974), p.1

Google Scholar

[42] N. Arutyunov, M. Elsayed, R. Krause-Rehberg et al.: J. Phys. Condens. Matter Vol. 25 (2013), p.035801

Google Scholar

[43] B. Paudyal, K. Mcintosh and D. Macdonald, in: Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), IEEE (2009) p.001588.

DOI: 10.1109/pvsc.2009.5411380

Google Scholar

[44] A. Istratov, H. Hieslmair and E. Weber: Appl. Phys. A: Mater. Sci. Process. Vol. 69 (1999), p.13

Google Scholar

[45] N. Arutyunov, N. Bennett, N. Wight et al.: Phys. Status Solidi B Vol. 253 (2016), p.2175

Google Scholar

[46] N.Yu. Arutyunov and V.V. Emtsev: Mater. Sci. Semicond. Process. Vol. 9 (2006), p.788

Google Scholar

[47] N.Yu. Arutyunov and V.V. Emtsev: Mater. Sci. Semicond. Process. Vol. 11 (2008), p.295

Google Scholar

[48] J. Suchet: Chemical Physics of Semiconductors (Van Nostrand, N.Y. 1965).

Google Scholar

[49] M. Rahm, R. Hoffmann, N. W. Ashcroft: Chem. Eur. J. Vol. 22 (2016), p.1

Google Scholar

[50] R. Ferrell:Rev. Mod. Phys. Vol. 28 (1956), p.308

Google Scholar