Phase Transition and Structural Defects in Complex Iron-Containing Oxide Glasses Probed by Positron Annihilation

Article Preview

Abstract:

Glasses with the compositions (100-x)(0.16Na2O/0.10MnO/0.74SiO2)/xFe2O3 (x = 0-15 mol%) were prepared and characterized using positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler broadening (CDB) spectroscopy. The PALS method applied seems to be sensitive to verify the Verwey phase transition, discovered for bulk magnetite (Fe3O4), from a high-temperature ‘bad metal’ conducting phase to a low-temperature insulating phase occurring at about 120 K in the glasses examined. It means that at relatively low concentration of Fe2O3 up to 15 mol%, the magnetite crystals could be synthesized in the amorphous matrix of Na2O/MnO/SiO2/Fe2O3 glass that is important for numerous practical applications. The CDB measurements showed that the majority of positrons in the glass samples studied are annihilated in the vicinity of oxygen anions and iron-oxide containing glasses have lower concentration of oxygen-vacancy defects compared to the non-iron containing base glass.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

119-124

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Woltz, R. Hiergeist, P. Görnert, C. Rüssel, Magnetite nanoparticles prepared by the glass crystallization method and their physical properties, J. Magn. Magn. Mater. 298 (2006) 7-13.

DOI: 10.1016/j.jmmm.2005.02.067

Google Scholar

[2] C. Worsch, P. Schaaf, R. Harizanova, C. Rüssel, Magnetisation effects of multicore magnetite nanoparticles crystallised from a silicate glass, J. Mater. Sci. 47 (2012) 5886-5890.

DOI: 10.1007/s10853-012-6490-3

Google Scholar

[3] S. El Shabrawy, C. Bocker, M. Miglierini, P. Schaaf, D. Tzankov, M. Georgieva, R. Harizanova, C. Rüssel, Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3, J. Magn. Magn. Mater. 421 (2017) 306-315.

DOI: 10.1016/j.jmmm.2016.08.021

Google Scholar

[4] M. Georgieva, D. Tzankov, R. Harizanova, G. Avdeev, C. Rüssel, Magnetic properties of magnetite nanoparticles crystallized in sodium-aluminoborosilicate glass matrix, Appl. Phys. A 122 (2016) 160.

DOI: 10.1007/s00339-016-9714-6

Google Scholar

[5] S. El Shabrawy, C. Bocker, D. Tzankov, M. Georgieva, R. Harizanova, C. Rüssel, The effect of zinc substitution on the magnetism of magnesium ferrite nanostructures crystallized from borate glasses, Ceram. Inter. 43 (2017) 3804-3810.

DOI: 10.1016/j.ceramint.2016.12.029

Google Scholar

[6] R. Harizanova, G. Völksch, C. Rüssel, Crystallization and microstructure of glasses in the system Na2O/MnO/SiO2/Fe2O3, Mater. Res. Bull. 46 (2011) 81-86.

DOI: 10.1016/j.materresbull.2010.09.036

Google Scholar

[7] E.J.W. Verwey, Electronic conduction in magnetite (Fe3O4) and its transition point at low temperatures, Nature 144 (1939) 327-328.

DOI: 10.1038/144327b0

Google Scholar

[8] S. Lee, A. Fursina, J.T. Mayo, C.T. Yavuz, V.L. Colvin, R.G.S. Sofin, I.V. Shvets, D. Natelson, Electrically driven phase transition in magnetite nanostructures, Nat. Mater. 7 (2008) 130-133.

DOI: 10.1038/nmat2084

Google Scholar

[9] M. Elsayed, N.Y. Arutyunov, R. Krause-Rehberg, V.V. Emtsev, G.A. Oganesyan, V.V. Kozlovski, Monovacancy – As complexes in proton-irradiated Ge studied by positron lifetime spectroscopy, Acta Mater. 83 (2015) 473-478.

DOI: 10.1016/j.actamat.2014.10.021

Google Scholar

[10] M. Elsayed, N.Y. Arutyunov, R. Krause-Rehberg, G.A. Oganesyan, V.V. Kozlovski, Formation and annealing of vacancy-P complexes in proton-irradiated germanium, Acta Mater. 100 (2015) 1-10.

DOI: 10.1016/j.actamat.2015.08.039

Google Scholar

[11] M. Elsayed, R. Krause-Rehberg, O. Moutanabbir, W. Anwand, S. Richter, C. Hagendorf, Cu diffusion-induced vacancy-like defects in freestanding GaN, New J. Phys. 13 (2011) 013029.

DOI: 10.1088/1367-2630/13/1/013029

Google Scholar

[12] J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra, Nucl. Instum. Methods Phys. Res. A 374 (1996) 235-244.

DOI: 10.1016/0168-9002(96)00075-7

Google Scholar

[13] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Springer, Berlin, 1999.

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[14] J. Cizek, M. Vlcek, I. Prochazka, Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation, Nucl. Instum. Methods Phys. Res. A 623 (2010) 982-994.

DOI: 10.1016/j.nima.2010.07.046

Google Scholar

[15] C. Russel, EPR and voltammetric studies of iron-containing mixed alkali glasses with the basic composition xNa2O(16-x)K2O.10CaO.74SiO2, Glastech. Ber. Glass. Sci. Technol. 70 (1997) 17-22.

Google Scholar

[16] R. Harizanova, I. Mihailova, M. Georgieva, D. Tzankov, Z. Cherkezova-Zheleva, D. Paneva, I. Avramova, D. Karashanova, G. Avdeev, I. Gugov, A. Setzer, P. Esquinazi, C. Rüssel, Magnetite crystallization in a sodium-calcium-silicate glass with high iron oxide concentration – Effect on the magnetic properties, J. Non-Cryst. Solids 634 (2024) 122986.

DOI: 10.1016/j.jnoncrysol.2024.122986

Google Scholar

[17] F. Walz, The Verwey transition – a topical review, J. Phys.: Condens. Matter 14 (2002) R285-R340.

DOI: 10.1088/0953-8984/14/12/203

Google Scholar