Applications of Electron-Positron Correlation-Polarization Potential Method to Positron Binding in Glycine Conformers

Article Preview

Abstract:

In this paper, we present a theoretical investigation of positron binding properties for glycine conformers.The glycine molecule has eight lowest-energy conformers with different steric arrangements,which are characterized by the different permanent dipole moments.We applied the electron-positron correlation-polarization potential method to calculate positron binding energies for the positron-molecule compounds. Our results show that all examined conformational equilibrium structures can form the positronic bound states, and these positron binding energies increase with increasing molecular dipole moments. The global minimum structure, which has the smallest dipole moment, exhibits the lowest positron binding energy. In contrast, the next lowest-energy conformer, despite also having a small dipole moment, exhibits the largest positron binding energy and consequently becomes the lowest-energy state of the positron-glycine complex.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

55-62

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.D. Barnes, S.J. Gilbert and C.M. Surko: Phys. Rev. A Vol. 67 (2003), 032706.

Google Scholar

[2] L.D. Barnes, J.A. Young and C.M. Surko: Phys. Rev. A, Vol. 74 (2006), 012706.

Google Scholar

[3] J.R. Danielson, J.A. Young and C.M. Surko: J. Phys. B: At., Mol. Opt. Phys. Vol. 42 (2009), 235203.

Google Scholar

[4] A.R. Swann and G.F. Gribakin: J. Chem. Phys., Vol. 153, (2020), 184311.

Google Scholar

[5] M. Furushima, M. Takagi, D. Yoshida, Y. Kita, T. Shimazaki and M. Tachikawa: Phys. Chem. Chem. Phys., Vol. 25 (2023), p.625.

Google Scholar

[6] D. Yoshida, Y. Kita, T. Shimazaki and M. Tachikawa. Phys. Chem. Chem. Phys., Vol. 24 (2022), p.26898.

Google Scholar

[7] O.H. Crawford: Proc. Phys. Soc. Vol. 91 (1967) p.279.

Google Scholar

[8] K. Koyanagi, Y. Kita and M. Tachikawa: Eur. Phys. J. D Vol. 66 (2012), p.121.

Google Scholar

[9] M. Nummela, H. Raebiger, D. Yoshida and M. Tachikawa: J. Phys. Chem. A Vol. 120 (2016), p.4037.

Google Scholar

[10] M. Ozaki, D. Yoshida, Y. Kita, T. Shimazaki and M. Tachikawa: ACS Omega Vol. 6 (2021), p.29449.

DOI: 10.1021/acsomega.1c03409

Google Scholar

[11] J.A. Charry, J. Romero, M.T. do Nascimento Varella and A. Reyes: Phys. Rev. A: At., Mol., Opt. Phys. Vol. 89 (2014), 052709.

Google Scholar

[12] Y. Sugiura, T. Takayanagi, Y. Kita and M Tachikawa: Eur. Phys. J. D, Vol. 73 (2019), p.162.[13] Y. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi and M. Tachikawa: J. Comput. Chem. Vol. 41 (2020), p.1576.

DOI: 10.1002/jcc.26200

Google Scholar

[14] M. Lattelais, F. Pauzat, J. Pilmé, Y. Ellinger and C. Ceccarelli: Astron. Astrophys. Vol. 532 (2011), p.1.

Google Scholar

[15] V. Barone, M. Biczysko, J. Bloinoac and C. Puzzarini: Astron. Astrophys. Vol. 15 (2013), p.10094.

Google Scholar

[16] S. Maeda, Y. Harabuchi, Y. Sumiya, M. Takagi, K. Suzuki, M. Hatanaka, Y. Osada, T. Taketsugu, K. Morokuma and K. Ohno: GRRM17. Information on http://iqce.jp/GRRM/index_e.shtml (Accessed 20 Aug 2024).

Google Scholar

[17] S. Maeda, K. Ohno and K. Morokuma: Phys. Chem. Chem. Phys. Vol. 15 (2013), p.3683.

Google Scholar

[18] S. Maeda, Y. Harabuchi, M. Takagi, K. Saita, K. Suzuki and T. Ichino: J. Comput. Chem. Vol. 39 (2017), p.233.

Google Scholar

[19] J.K. O'Connell and N.F. Lane: Phys. Rev. A Vol. 27 (1983),1893.

Google Scholar

[20] A. Jain: Phys. Rev. A, Vol. 41 (1990), 2437.

Google Scholar

[21] B. Barbiellini, M.J. Puska, T. Torsti and R.M. Nieminen: Phys. Rev. B Vol. 51 (1995), 7341.

Google Scholar

[22] E. Boroński and R.M. Nieminen: Phys. Rev. B Vol. 34 (1986), 3820.

Google Scholar

[23] B. Barbiellini-Amidei: Phys. Lett. A Vol. 134 (1989), p.328.

Google Scholar

[24] B. Barbiellini, M.J. Puska, T. Torsti and R.M. Nieminen: Phys. Rev. B, Vol. 53 (1996),16201.

Google Scholar

[25] J. Kuriplach and B. Barbiellini: Phys. Rev. B Vol. 89 (2014), 155111.

Google Scholar

[26] J.C. Light, I.P. Hamilton and J.V. Lill: J. Chem. Phys. Vol. 82 (1985), p.1400.

Google Scholar

[27] R. Kosloff and H. Tal-Ezer: Phys. Lett. Vol. 127 (1986), p.223.

Google Scholar

[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox: Gaussian 16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.

Google Scholar