Feasibility of a ’Brightness Booster’ for the Intense Slow Positron Source NEPOMUC

Article Preview

Abstract:

Brightness enhancement by re-moderation of highly intense slow positron sources at nuclear reactors or large electron accelerators is an inevitable requirement for most positron experiments. We demonstrate the feasibility of a new layout for re-moderation combining for the first time the high reliability of magnetic beam guiding, the high efficiency of reflection re-moderation, correction of spherical aberrations in the primary focussing lens and loss-free extraction of the re-moderated beam by an E x B-filter. In the case of the intense positron source NEPOMUC at the research reactor FRM II in Munich, up to 10-fold intensity and 100-fold brightness are predicted for the re-moderated positron beam, compared to the current situation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

23-36

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kögel, G. The München scanning positron microscope, Appl.Surf.Science 116, 108, 1997

DOI: 10.1016/S0169-4332(96)01038-0

Google Scholar

[2] Mills, A.P. Brightness enhancement of slow positron beams, Appl. Phys. 23, 189-191, 1980

DOI: 10.1007/BF00899716

Google Scholar

[3] Hugenschmidt, C.; Piochacz, C.; Reiner, M.; Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments, New Journal of Physics, Vol. 14, 055027, 2012

DOI: 10.1088/1367-2630/14/5/055027

Google Scholar

[4] Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.: Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik S. Positron Beam Characteristics at NEPOMUC Upgrade, Journ.of.Phys.: Conf.Series 505, 012029, 2014, https://doi.org/10.1088/1742- 6596/505/1/012029

DOI: 10.1088/1742-6596/505/1/012029

Google Scholar

[5] Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh,H.; Stenson, E.V.; Stoneking, M.R.; Hugenschmidt, C,; Piochacz, C. Characterization of the NEPOMUC primary and remoderated positron beams at different energies, Nucl.Instr.& Meth.in Phys.Res.A 827, 52, 2016

DOI: 10.1016/j.nima.2016.04.093

Google Scholar

[6] Piochacz, C.; Kögel, G.; Egger, W.; Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.; Dollinger, G. A positron remoderator for the high intensity positron source NEPOMUC, Appl.Surf.Science 255, 98 2008.

DOI: 10.1016/j.apsusc.2008.05.286

Google Scholar

[7] Oshima, N.; Suzuki, R.; Ohdaira, T.; Kinomura, A.; Narumi, T.; Uedono, A.; Fujinami, M. Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator, Journ.of Appl. Phys. 103, 094916, 2008

DOI: 10.1063/1.2919783

Google Scholar

[8] Suzuki, R.; Ohdaira, T.; Mikado, T.; Uedono, A.; Ohgaki, H.; Yamazaki, T.; Tanigawa, S. Moderation of Positron Generated by an Electron Linac, Mat.Science For. 255-257, 114, 1997

DOI: 10.4028/www.scientific.net/MSF.255-257.114

Google Scholar

[9] Britton, D.T.; Uhlmann, K.; Kögel, G. Magnetic positron optics, Appl.Surf.Science 85, 158, 1995

DOI: 10.1016/0169-4332(94)00326-2

Google Scholar

[10] Schultz, P.J.; Lynn K.G. Interaction of positron beams with surfaces, thin films, and interfaces, Rev.Mod.Phys. 60, 701, 1988

DOI: 10.1103/RevModPhys.60.701

Google Scholar

[11] Hawkes, P.W.; Kasper, E. Principles of electron optics, Academic Press, (1996)

Google Scholar

[12] Mulligan, F.J.; Lubell, M.S. A hybrid beam design for slow positron transport, Meas.Sci. Technol. 4, 197, 1993

DOI: 10.1088/0957-0233/4/2/011

Google Scholar

[13] Preikszas, D.; Rose, H. Procedures for minimizing the aberrations of electromagnetic compound lenses, Optik, Vol. 100, 179, 1995, https://api.semanticscholar.org/CorpusID:118033353

Google Scholar

[14] Frosien, J.; Lanio, S.; Feuerbaum, H.P. High precision electron optical system for absolute and CD-measurements on large substrates, Nucl.Instr.& Meth.in Phys.Res. A 363, 25, 1995

DOI: 10.1016/0168-9002(95)00150-6

Google Scholar

[15] Plies, E.; Degel, B.; Hayn, A.; Knell, G.; Neumann, J.; Schiebel, B. Experimental results using a "low-voltage booster" in a conventional SEM, Nucl.Instr.& Meth.in Phys.Res. A 363, 31, 1995, https://doi.org/10.1016/S0168-9002(98)01560-5[16] Comsol Multipyhsics®, Comsol Multipyhsics 5.6 (Build 280), https://www.comsol.com

DOI: 10.1016/s0168-9002(98)01560-5

Google Scholar

[17] Dickmann, M.; Mitteneder, J.; Kögel, G.; Egger, W.; Sperr, P.; Ackermann, U.; Piochacz, C.; Dollinger, G. Radio frequency elevator for a pulsed positron beam, Nucl.Instr. & Meth.in Phys.Res.A 821, 40, 2016

DOI: 10.1016/j.nima.2016.03.011

Google Scholar

[18] Dickmann, M.; Egger, W.; Kögel, G.; Vohburger, S.; Hugenschmidt, C. Upgrade of the NEPOMUC remoderator, Acta Phys. Pol. A, Vol. 137, 149-151, 2020

DOI: 10.12693/APhysPolA.137.149

Google Scholar