Fundamental Experiments with Positronium Confined in Micro-Cavities and Emitted into Vacuum with the New Bunched Positron Beam at the Antimatter Lab of Trento

Article Preview

Abstract:

A new bunched positron (e+) beam is currently under final development at the AntiMatter Laboratory (AML) of the University of Trento. The positron beam has been designed to deliver bunches containing up to a few 105 positrons compressed to durations of less than 2 ns and with a tunable energy range between 1 and 21 keV. Thanks to the specifications of this new apparatus, different experiments based on the production of positronium (Ps) in nanostructured e+/Ps converters have been planned. A silicon target with nanochannels connected to laser-written buried micro-cavities is under development. The intent is to produce Ps atoms in the nanochannels and collect them in the micro-cavities to explore the mechanisms of Ps/cavity walls interaction and Ps/Ps interaction. Moreover, Ps clouds emitted into vacuum after implantation of e+ bunches in nanochanneled e+/Ps converters will be employed to perform measurements of the entanglement of the three annihilation gamma-rays of Ps and the inertial sensing on Ps. In this work, the characteristics of the new positron beam at the AML of Trento will be presented and the scheduled experiments will be illustrated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

13-21

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Cassidy, Colloquium Experimental progress in positronium laser physics, Eur. Phys. J. D 72 (2018) 53

Google Scholar

[2] T.J. Murphy and C.M. Surko, Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules, Phys. Rev. A 46 (1992) 5696

DOI: 10.1103/physreva.46.5696

Google Scholar

[3] J. R. Danielson, D.H.E. Dubin, R.G. Greaves, and C.M. Surko, Plasma and trap-based techniques for science with positrons, Rev. Mod. Phys. 87 (2015) 247

DOI: 10.1103/revmodphys.87.247

Google Scholar

[4] R.G. Greaves and C.M. Surko, Positron trapping and the creation of high-quality trap-based positron beams, Nucl. Instrum. Methods Phys. Res., Sect. B 192 (2002) 90

DOI: 10.1016/s0168-583x(02)00717-6

Google Scholar

[5] S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, and R. S. Brusa, High positronium yield and emission into the vacuum from oxidized tunable nanochannels in silicon, Phys. Rev. B 81 (2010) 235418

DOI: 10.1103/physrevb.81.235418

Google Scholar

[6] L. Liszkay, F. Guillemot, C. Corbel, J. P. Boilot, T. Gacoin, E. Barthel et al., Positron annihilation in latex-templated macroporous silica films: Pore size and ortho-positronium escape, New J. Phys. 14 (2012) 065009

DOI: 10.1088/1367-2630/14/6/065009

Google Scholar

[7] S. Mariazzi, B. Rienäcker, R. Magrin Maffei, L. Povolo, S. Sharma, R. Caravita, L. Penasa, P. Bettotti, M. Doser, and R. S. Brusa, Forward emission of positronium from nanochanneled silicon membranes, Phys. Rev. B 105 (2022) 115422

DOI: 10.1103/physrevb.105.115422

Google Scholar

[8] D.B. Cassidy, S.H. Deng, R.G. Greaves, and A.P. Mills, Accumulator for the production of intense positron pulses, Rev. Sci. Instrum. 77 (2006) 073106

DOI: 10.1063/1.2221509

Google Scholar

[9] S. Aghion, C. Amsler, A. Ariga, T. Ariga, A. S. Belov, G. Bonomi et al., (AEgIS Collaboration), Positron bunching and electrostatic transport system for the production and emission of dense positronium clouds into vacuum, Nucl. Instrum. Methods Phys. Res., Sect. B 362 (2015) 86

Google Scholar

[10] A. M. Alonso, S. D. Hogan, and D. B. Cassidy, Production of 23S1 positronium atoms by single- photon excitation in an electric field, Phys. Rev. A 95 (2017) 033408

Google Scholar

[11] C. Amsler et al. (AEgIS Collaboration), Velocity-selected production of 23S metastable positronium, Phys. Rev. A 99 (2019) 033405

Google Scholar

[12] D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, and A. P. Mills, Jr., Efficient Production of Rydberg Positronium, Phys. Rev. Lett. 108 (2012) 043401

DOI: 10.1103/physrevlett.108.043401

Google Scholar

[13] S. Aghion et al. (AEgIS Collaboration), Laser excitation of the n=3 level of positronium for antihydrogen production, Phys. Rev. A 94 (2016) 012507

Google Scholar

[14] R.E. Sheldon, T.J. Babij, S.H. Reeder, S.D. Hogan, and D.B. Cassidy, Precision Microwave Spectroscopy of the Positronium 23S1→23P2 Interval, Phys. Rev. Lett. 131 (2023) 043001

DOI: 10.1103/physreva.107.042810

Google Scholar

[15] C. Amsler et al. (AEḡIS Collaboration), Pulsed production of antihydrogen, Comm. Phys. 4 (2021) 19

Google Scholar

[16] L. T. Glöggler et al. (AEḡIS Collaboration), Positronium Laser Cooling via the 13S−23P Transition with a Broadband Laser Pulse, Phys. Rev. Lett. 132 (2024) 083402

Google Scholar

[17] K. Shu et al., Cooling positronium to ultralow velocities with a chirped laser pulse train, Nature 633 (2024) 793

Google Scholar

[18] D. B. Cassidy and A. P. Mills, Jr., The production of molecular positronium, Nature 449 (2007) 195

Google Scholar

[19] D. B. Cassidy and A. P. Mills, Jr., Interactions Between Positronium Atoms in Porous Silica, Phys. Rev. Lett., 100 (2008) 013401

DOI: 10.1103/physrevlett.100.013401

Google Scholar

[20] P. M. Platzman and A.P. Mills, Jr., Possibilities for Bose condensation of positronium, Phys. Rev. B 49 (1994) 454

DOI: 10.1103/physrevb.49.454

Google Scholar

[21] K. Shu, X. Fan, T. Yamazaki, T. Namba, S. Asai, K. Yoshioka, and M. Kuwata-Gonokami, Study on cooling of positronium for Bose-Einstein condensation, J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 104001

DOI: 10.1088/0953-4075/49/10/104001

Google Scholar

[22] B.C. Hiesmayr and P. Moskal, Genuine Multipartite Entanglement in the 3-Photon Decay of Positronium, Scientific Reports, 7 (2017) 15349

DOI: 10.1038/s41598-017-15356-y

Google Scholar

[23] S.D. Bass, S. Mariazzi, P. Moskal, and E. Stępień, Colloquium: Positronium physics and biomedical applications, Rev. of Mod. Phys., 95 (2023) 1

DOI: 10.1103/revmodphys.95.021002

Google Scholar

[24] A.P. Mills Jr, M. Leventhal, Can we measure the gravitational free fall of cold Rydberg state positronium?, Nucl. Instrum. Methods Phys. Res. B 192 (2002) 102

DOI: 10.1016/s0168-583x(02)00789-9

Google Scholar

[25] M. Oberthaler, Anti-matter wave interferometry with positronium, Nucl. Instrum. Methods Phys. Res. B 192 (2002) 129

Google Scholar

[26] S. Mariazzi, R. Caravita, M. Doser, G. Nebbia, and R.S. Brusa, Toward inertial sensing with a 23S positronium beam, Eur. Phys. J. D 74 (2020) 79

DOI: 10.1140/epjd/e2020-100585-8

Google Scholar

[27] L. Povolo, S. Mariazzi, L. Penasa, R. Caravita , and R.S. Brusa, Generation of a bunched positron beam extracted nonadiabatically from a buffer-gas trap and focused in a free field region, Phys. Rev. Accel. Beams, 26 (2023) 051601

DOI: 10.1103/physrevaccelbeams.26.051601

Google Scholar

[28] L. Povolo, S. Mariazzi, M. Bettonte, L. Penasa, R. Caravita, R.S. Brusa Systematic characterization of a Ne, Ar, Kr rare-gas moderated positron beam and spin polarization measurements, Nucl. Inst. and Meth. B 552 (2024) 165376

DOI: 10.1016/j.nimb.2024.165376

Google Scholar

[29] S. Mariazzi, R. Caravita, L. Penasa, A. Cheahimi, R.C. Ferguson, S. Salandini, M. Bettonte, R.S. Brusa, New bunched positron beam at the AntiMatter Laboratory in Trento: planned quantum experiments with positronium, Acta Phys Pol A, 146 (2024) 5

DOI: 10.12693/aphyspola.146.674

Google Scholar

[30] Y. Nagai, Y. Nagashima, J. Kim, Y. Itoh, T. Hyodo, Measurement of positron spin polarization by using the Doppler broadening method, Nucl. Inst. and Meth. B 171 (2000) 199

DOI: 10.1016/s0168-583x(00)00044-6

Google Scholar

[31] J. Clarke, D. P. Van Der Werf, B. Griffiths, D. C. Beddows, M. Charlton, H. H. Telle, and P. R. Watkeys, Design and operation of a two-stage positron accumulator, Rev. Sci. Instrum. 77 (2006) 063302

DOI: 10.1063/1.2206561

Google Scholar

[32] R. G. Greaves and J. M. Moxom, Compression of trapped positrons in a single particle regime by a rotating electric field, Phys. Plasmas 15 (2008) 072304

DOI: 10.1063/1.2956335

Google Scholar

[33] J. P. Sullivan, J. Roberts, R. W. Weed, M. R. Went, D. S. Newman, and S. J. Buckman, A trap- based positron beamline for the study of materials, Meas. Sci. Technol. 21 (2010) 085702

DOI: 10.1088/0957-0233/21/8/085702

Google Scholar

[34] D. A. Cooke, G. Barandun, S. Vergani, B. Brown, A. Rubbia, and P. Crivelli, Positron extraction to an electromagnetic field free region, J. Phys. B 49 (2016) 014001

DOI: 10.1088/0953-4075/49/1/014001

Google Scholar

[35] S. Aghion et al. (AEgIS collaboration), Producing long-lived 23S positronium via 33P laser excitation in magnetic and electric fields, Phys. Rev. A 98 (2018) 013402

Google Scholar

[36] M. Antonello et al. (AEgIS collaboration), Efficient 23S positronium production by stimulated decay from the 33P level, Phys. Rev. A 100 (2019) 063414

Google Scholar

[37] M. Antonello et al., (AEgIS Collaboration), Rydberg-positronium velocity and self-ionization studies in a 1T magnetic field and cryogenic environment, Phys. Rev. A, 102 (2020) 013101

Google Scholar

[38] O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Z. Borra, I. Pavlov, A. Bek, R. Turan, D. Kesim, S. Tozburun, S. Ilday, F. Ö. Ilday, In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon, Nature Photonics 11 (2017) 639

DOI: 10.1038/s41566-017-0004-4

Google Scholar

[39] I.T. Sorokina, N. Tolstik, R. A. Richter, V. L. Kalashnikov, A. Rudenkov, and E. Sorokin, in the Proceedings of the VII International Symposium on Ultrafast Dynamics and Metastability 2022, 6 - 10 June, Crete, Greece, 84 (2022)

Google Scholar

[40] M.X. Asaro, S. Herrera, M. Fuentes-Garcia, G.G. Cecchini, E.E. Membreno, R.G. Greaves, and A.P. Mills Jr, Conditions for obtaining positronium Bose–Einstein condensation in a micron-sized cavity, Eur. Phys. J. D., 76 (2022) 107

DOI: 10.1140/epjd/s10053-022-00427-1

Google Scholar

[41] B.S. Cooper, J.-P. Boilot, C. Corbel, F. Guillemot, L. Gurung, L. Liszkay, and D. B. Cassidy, Annihilation of positronium atoms confined in mesoporous and macroporous SiO2 films, Phys. Rev. B, 97 (2018) 205302

DOI: 10.1103/physrevb.97.205302

Google Scholar

[42] P. Sferlazzo, S. Berko, and K. F. Canter, Experimental support for physisorbed positronium at the surface of quartz. Phys. Rev. B 32 (1985) 6067

DOI: 10.1103/physrevb.32.6067

Google Scholar

[43] R. Saniz, B. Barbiellini, P.M. Platzman, A.J. Freeman, Physisorption of positronium on quartz surfaces. Phys. Rev. Lett. 99 (2007) 096101

DOI: 10.1103/physrevlett.100.019902

Google Scholar

[44] S. Mariazzi et al. (AEgIS Collaboration), High-yield thermalized positronium at room temperature emitted by morphologically tuned nanochanneled silicon targets, J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 085004

DOI: 10.1088/1361-6455/abf6b6

Google Scholar

[45] D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Positronium cooling in porous silica measured via Doppler spectroscopy. Phys. Rev. A 81 (2010) 012715

DOI: 10.1103/physreva.81.039904

Google Scholar

[46] F. Guatieri, S. Mariazzi, C. Hugenschmidt, and R.S. Brusa, Classical modeling of positronium cooling in silicon nanochannel plates. Phys. Rev. B 106 (2022) 035418

DOI: 10.1103/physrevb.106.035418

Google Scholar

[47] K. Shu, A. Ishida, T. Namba, S. Asai, N. Oshima, B.E. O'Rourke, and K. Ito, Observation of orthopositronium thermalization in silica aerogel at cryogenic temperatures. Phys. Rev. A 104 (2021) L050801

DOI: 10.1103/physreva.104.l050801

Google Scholar

[48] D.B. Cassidy, S.H.M. Deng, R.G. Greaves, T. Maruo, N. Nishiyama, J. B. Snyder, H.K.M. Tanaka, and A. P. Mills, Jr., Experiments with a High-Density Positronium Gas, Phys. Rev. Lett. 95 (2005) 195006

DOI: 10.1103/physrevlett.95.195006

Google Scholar

[49] B.C. Hiesmayr and P. Moskal, Witnessing Entanglement In Compton Scattering processes Via Mutually Unbiased Bases, Nature: Scientific Reports 9, (2019) 8166

DOI: 10.1038/s41598-019-44570-z

Google Scholar

[50] S. Sharma et al. Feasibility studies for imaging e+e- annihilation with modular multi-strip detectors Nuclear Instruments and Methods in Physics Research A 1062 (2024) 169192

Google Scholar

[51] A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81 (2009) 105

DOI: 10.1103/revmodphys.81.1051

Google Scholar

[52] S. Mariazzi, R. Caravita, L. Glöggler, L. Povolo, L. Penasa, S. Sharma, P. Moskal and R.S. Brusa. Development of a Position-Sensitive Detector for Positronium Inertial Sensing Measurements, Acta Phys. Pol. A 142 (2022) 319

DOI: 10.12693/aphyspola.142.319

Google Scholar