Positron Studies of Bismuth Donor Centers in Silicon: Effect of Irradiation with 15 MeV Protons

Article Preview

Abstract:

The centers of bismuth (Bi) in silicon are being scrutinized as the defect qubits for mostly developed integrated electronics including its photonic component and we have applied the positron annihilation lifetime spectroscopy (PALS) to gain deeper insight into symmetry of the Bi impurity center whose configuration was modified by 15 MeV proton irradiation. It was revealed that hyperfine (hf) and super-hyperfine (shf) interactions of the nuclear and electron spin systems of the bismuth impurity center, 209Bi (J = 9/2), with the regular 29Si (J = 1/2) atoms of silicon delay the essentially local event of emitting of a couple of annihilation gamma–quanta from within the crystal cell which comprises Bi impurity atom (J is the nuclear spin). This phenomenon is observed under increasing occupancy of Bi donor ground and excited states, in contrast to a profoundly enriched 28Si (J = 0) material (so-called “semiconductor vacuum”) where content of 29Si (J = 1/2) isotope was suppressed up to the value of ≈ 50 ppm. The many-body exciton-like states comprising a polyelectronic exciton {ee+eh} at Bi donor center are suggested for interpreting the data. The proton irradiation leads to acquiring by Bi impurity atom of an open volume ( Vop ) which is splitted in [Vop – Bi] complex. This defect possessing of D3d symmetry dominates in the irradiated material. Being thermally stable up to ≈ 370 °C, [Vop – Bi] complex is annealed at ~ 470 – 500 °C. These data agree well with the results of ab intio cluster calculations performed on the basis of LDA-KKR formalism for exploring both the energy gain and symmetry of Bi–vacancy complex.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

63-68

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Wilson, A. Miloshevski, D. Hooper and N. Peters, Radiation-Induced Dark Counts for Silicon Single-Photon Detectors in Space, Phys. Rev. Appl. 16 (2021) 064049–064061.

DOI: 10.1103/physrevapplied.16.064049

Google Scholar

[2] J. Logan, K. Woller, P. Webster, C. Morath, M. Short, Open volume defect accumulation with irradiation in GaN, GaP, InAs, InP, Si, ZnO, and MgO, J. Appl. Phys. 134 (2023) 225701–225725.

DOI: 10.1063/5.0147324

Google Scholar

[3] T. Sekiguchi, M. Steger, K. Saeedi, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov and N. Nötzel, Hyperfine structure and nuclear hyperpolarization observed in the bound exciton luminescence of Bi donors in natural Si, Phys. Rev. Lett. 104 (2010)137402–137406.

DOI: 10.1103/physrevlett.104.137402

Google Scholar

[4] H. Riemann, N. Abrosimov, N. Nötzel, Doping of silicon crystals with Bi and other volatile elements by the pedestal growth technique, ECS Trans., 3 (2006) 53–55.

DOI: 10.1149/1.2355745

Google Scholar

[5] P. Becker, H.-J. Pohl, H. Riemann, N. Abrosimov, Enrichment of silicon for a better kilogram, Phys. Stat. Sol. A, 207 (2010) 49–66.

DOI: 10.1002/pssa.200925148

Google Scholar

[6] V. V. Emtsev, A. M. Ivanov, V. V. Kozlovski, A. A. Lebedev, G. A. Oganesyan, N .B. Strokan, G. Wagner, Similarities and distinctions of defect production by fast electron and proton irradiation: moderatly doped silicon and silicon carbide of n-type, Fiz. Tekh. Poluprov. 46 (2012) 473–481.

DOI: 10.1134/s1063782612040069

Google Scholar

[7] N. Yu. Arutyunov, M. Elsayed, R. Krause-Rehberg, V.V. Emtsev, G.A. Oganesyan, V.V. Kozlovski, Positron annihilation on defects in silicon irradiated with 15 MeV protons, J. Phys.: Condens. Matter 25 (2013) 035801–035828.

DOI: 10.1088/0953-8984/25/3/035801

Google Scholar

[8] E. Boronski, R. Nieminen, Electron-positron density-functional theory, Phys. Rev.B 34 (1986) 3820 –3831.

DOI: 10.1103/physrevb.34.3820

Google Scholar

[9] J. Li, N. H. Le, K. L. Litvinenko, et al., Radii of Rydberg states of isolated silicon donors, Phys. Rev. B 98 (2018) 085423-1–085431-8.

Google Scholar

[10] C. Bussolati, A. Dupasquier, L. Zappa, Positron bound states in alkali halides, Nuovo Cimento B 52 (1967) 529–538.

DOI: 10.1007/bf02711095

Google Scholar

[11] L. Simons, The Existence of Positronium Chloride, Phys. Rev. 90 (1953) 165–166.

DOI: 10.1103/physrev.90.165

Google Scholar

[12] G. Wolfowicz, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, S. A. Lyon, J. J. L. Morton, Atomic clock transitions in silicon-based spin qubits, Nature Nanotechnology 8 (2013)561–564.

DOI: 10.1038/nnano.2013.117

Google Scholar

[13] N. Arutyunov, R. Krause-Rehberg, M. Elsayed, V. Emtsev, N. Abrosimov, G. Oganesyan, V. Kozlovski, Microstructure of bismuth centers in silicon before and after irradiation with 15 MeV protons, J. Phys. Condens.Matter 33 (2021) 245702–245717.

DOI: 10.1088/1361-648x/abe96f

Google Scholar

[14] H. Höhler, N. Atodiresei, K. Schroeder, R. Zeller, P. H. Dederichs, Vacancy complexes with oversized impurities in Si and Ge, Phys. Rev. B 71 (2005) 035212–035219.

DOI: 10.1103/physrevb.71.035212

Google Scholar

[15] D. V. Makhov, L. J. Lewis, Stable fourfold configurations for small vacancy clusters in silicon from ab initio calculations, Phys. Rev. Lett. 92 (2004) 255504–255508.

DOI: 10.1103/physrevlett.92.255504

Google Scholar

[16] T. E. M. Staab, A. Sieck, M. Haugk, M. J. Puska, Th. Frauenheim, H. S. Leipner, Stability of large vacancy clusters in silicon, Phys. Rev. B 65 (2002)115210–115221.

DOI: 10.1103/physrevb.65.115210

Google Scholar

[17] G. D. Watkins, Defects in irradiated silicon: EPR of the tin-vacancy pair, Phys. Rev.B 12 (1975) 4383-4390.

DOI: 10.1103/physrevb.12.4383

Google Scholar

[18] S. Bubin, L. Adamowicz, Nonrelativistic variational calculations of the positronium molecule and the positronium hydride, Phys. Rev. A 74 (2006) 052502-1–052502-5.

DOI: 10.1103/physreva.74.052502

Google Scholar