Development of Slow Positron Beamline Using 30-MeV L-Band LINAC

Article Preview

Abstract:

A slow positron beamline has been developed using a 30-MeV L-band electron linear accelerator at Kyoto University. Based on particle-transport simulations to evaluate positron generation, the optimum thickness of the tungsten converter was determined. Through positron trajectory simulations in a Penning trap (linear storage section), the electrode types were compared to realize the best storage performance; the importance of the uniformity and precision of magnetic fields using supplementary coils was highlighted. During the commissioning experiments, positron transport to the beamline end was confirmed, along with the operation of the linear storage section.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 374)

Pages:

37-43

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.Asoka‐Kumar, K.G. Lynn, D.O. Welch, J. Appl. Phys. 76 (1994)4935;.

DOI: 10.1063/1.357207

Google Scholar

[2] K.G. Lynn, F.M. Jacobsen, Hyperfine Interact. 89 (1994) 19;.

DOI: 10.1007/BF02064493

Google Scholar

[3] C. Hugenschmidt, C. Piochacz, M. Reiner, K. Schreckenbach, New J. Phys. 14 (2012) 055027;.

DOI: 10.1088/1367-2630/14/5/055027

Google Scholar

[4] B.E. O'Rourke, N. Hayashizaki, A. Kinomura, R. Kuroda, E.J. Minehara, T.Ohdaira, N. Oshima, R. Suzuki, Rev. Sci. Instrum. 82 (2011) 063302;.

DOI: 10.1063/1.3599156

Google Scholar

[5] A. Wagner, M. Butterling, M.O. Liedke, K. Potzger, R.Krause-Rehberg, AIP Conf. Proc. 1970 (2018) 040003;.

DOI: 10.1063/1.5040215

Google Scholar

[6] F. Ebel, W. Faust, H. Schneider, I. Tobehn, Nucl. Instrum. Methods Phys. Res. A274 (1989) 1;.

DOI: 10.1016/0168-9002(89)90357-4

Google Scholar

[7] T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M.Chiwaki, T. Yamazaki, T. Tomimasu, Appl. Phys. A 51 (1990) 146;.

DOI: 10.1007/bf00324279

Google Scholar

[8] A. Kinomura, R. Suzuki, N. Oshima, B. E. O'Rourke, T. Nishijima, H. Ogawa, Rev. Sci. Instrum. 85 (2014) 123110:

DOI: 10.1063/1.4903754

Google Scholar

[9] T. Iwai, H. Tsuchida, Nucl. Instrum. Methods Phys. Res. B 285 (2012) 18;.

DOI: 10.1016/j.nimb.2012.05.005

Google Scholar

[10] A. Kinomura, R. Suzuki, T. Ohdaira, N. Oshima, B.E. O'Rourke, T. Nishijima, J. Phys. Conf. Ser. 443 (2013) 012043;.

DOI: 10.1088/1742-6596/443/1/012043

Google Scholar

[11] H. Tsuchida, S. Mizuno, H. Tsutsumi, A. Kinomura, R. Suzuki, A. Itoh, Mater. Res. Express 3 (2016) 055201;.

DOI: 10.1088/2053-1591/3/5/055201

Google Scholar

[12] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S.I. Abe, T. Kai, Y. Matsuya, N. Matsuda, Y. Hirata, T. Sekikawa, L. Yao, P.E. Tsai, H.N. Ratliff, H. Iwase, Y. Sakaki, K. Sugihara, N. Shigyo, L. Sihver, K. Niita, J. Nucl. Sci. Technol. 61 (2024) 127;.

DOI: 10.1080/00223131.2023.2275736

Google Scholar

[13] SIMION version 8.1. https://simion.com/

Google Scholar

[14] H. Tanaka, T. Michishita, T. Yuyama, K. Takami, Y. Kawase, A. Mohri, Jpn. J. Appl. Phys. 31 (1992) 4029;.

DOI: 10.1143/jjap.31.4029

Google Scholar

[15] K. Sudarshan, S.N. Samarin, P. Guagliardo, V.N. Petrov A.H. Weiss, J.F. Williams, Phys. Rev. B 87 (2013) 085418;.

DOI: 10.1103/PhysRevB.87.085418

Google Scholar