[1]
D. Felix, I. Albayrak, A. Abgottspon, R. Boes, Hydro-abrasive erosion of hydraulic turbines caused by sediment: A century of research and development, in: IOP Conference Series: Earth and Environmental Science (2016), 1-6.
DOI: 10.1088/1755-1315/49/12/122001
Google Scholar
[2]
S. Sangal, M. Singhal, R. Saini, G. Tomar, Hydro-abrasive erosion modelling in Francis turbine at different silt conditions, Sustainable Energy Technologies and Assessments (2022), 1-9.
DOI: 10.1016/j.seta.2022.102616
Google Scholar
[3]
G. Messa, S. Mandelli, S. Malavasi, Hydro-abrasive erosion in Pelton turbine injectors: A numerical study, Renewable Energy (2018), 474-488.
DOI: 10.1016/j.renene.2018.06.064
Google Scholar
[4]
E. Simonov, Hydropower development in 2020: Global trends, Policy Brief (2021), 12-14.
Google Scholar
[5]
N. Ikramov, T. Majidov, M. Mamajonov, O. Chulponov, Hydro-abrasive wear reduction of irrigation pumping units, E3S Web of Conferences (2021), 3019.
DOI: 10.1051/e3sconf/202126403019
Google Scholar
[6]
A.K. Rai, A. Kumar, T. Staubli, Optimization of hydropower plants regarding hydro-abrasive erosion, International Journal of Fluid Machinery and Systems (2019), 119-127.
DOI: 10.5293/ijfms.2019.12.2.119
Google Scholar
[7]
N. Shrivastava, A. Rai, A. Abbas, Y. X. Xiao, Analysis of hydro-abrasive erosion in a high-head Pelton turbine injector using a Eulerian-Lagrangian approach, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (2023).
DOI: 10.1177/09576509231218043
Google Scholar
[8]
K. Yigit, H. Aydin, Hydro-abrasive erosion resistance of C45 steel in different heat-treated states on a designed wear test apparatus, Materials Testing (2010), 323-331.
DOI: 10.3139/120.110129
Google Scholar
[9]
Dey, M. Fabbri, S. Gemmet, M. Dalaee, M. Wessel, K. Wegener, Manufacturing a prototype with laser direct metal deposition and laser welding made from martensitic steel 1.4313, The International Journal of Advanced Manufacturing Technology (2022).
DOI: 10.1007/s00170-022-10606-4
Google Scholar
[10]
Dey, R. Floeder, R. Solcà, T. Schudeleit, K. Wegener, Comprehensive distortion analysis of a laser direct metal deposition (DMD)-manufactured large prototype made of soft martensitic steel 1.4313, Journal of Manufacturing and Materials Processing (2024), 78.
DOI: 10.3390/jmmp8020078
Google Scholar
[11]
M.-J. Liu, G. Zhang, Y.-H. Lu, J.-Q. Han, G.-R. Li, C.-X. Li, C.-J. Li, G.-J. Yang, Plasma spray–physical vapor deposition toward advanced thermal barrier coatings: a review, Rare Metals 39 (2020).
DOI: 10.1007/s12598-019-01351-x
Google Scholar
[12]
I. Kravchenko, Y. Kuznetsov, T.N. Borovik, N.S. Baranova, A.A. Gribakin, Influence of thermodynamic parameters of a plasma jet on the adhesive strength of gas-thermal coatings, Tekhnicheskiy servis mashin 62 (2024), 77-84.
DOI: 10.22314/2618-8287-2024-62-2-77-84
Google Scholar
[13]
H. Singh, M. Kumar, R. Singh, Slurry erosion performance of cold sprayed WC-12Co composite coatings, Surface Review and Letters (2023).
DOI: 10.1142/s0218625x24500501
Google Scholar
[14]
H. Singh, M. Kumar, R. Singh, Microstructural and Mechanical Characterization of a Cold-Sprayed WC-12Co Composite Coating on Stainless Steel Hydroturbine Blades, Journal of Thermal Spray Technology (2022), 1-14.
DOI: 10.1007/s11666-022-01497-8
Google Scholar
[15]
M. Subbiah, D. Ravindran, S. Rajakarunakaran, A. Khan, Analysis of surface properties of tungsten carbide (WC) coating over austenitic stainless steel (SS316) using plasma spray process, Materials Today: Proceedings (2019).
DOI: 10.1016/j.matpr.2019.09.219
Google Scholar