Spectroscopic Analysis of HVOF-Sprayed Al2O3-40%TiO2 Coatings for Solar Thermal Applications

Article Preview

Abstract:

This paper presents an in-depth spectroscopic analysis of Al2O3-40%TiO2 coatings deposited via HVOF thermal spraying on a 10CrMo9.10 heat-resistant steel substrate. The study aims to correlate the optoelectronic and structural properties of the coatings with their composition and microstructure. Spectroscopic investigations revealed intense absorption in the visible (VIS) region due to electronic transitions from the valence band to the conduction band of the ceramic materials and high reflectivity in the ultraviolet (UV) region. These properties make the coatings particularly useful for protective systems in solar thermal power plants. The detailed characterization of the optical properties of the Al2O3-40%TiO2 coatings obtained through HVOF technology was made possible by corroborating spectroscopic results. These insights are essential for understanding the mechanisms that govern the performance of these coatings in protective applications under high temperatures and aggressive environments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 379)

Pages:

59-67

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gwoździk, M., Ullrich, C., Schimpf, C., Rafaja, D., Kulesza, S., & Bramowicz, M. (2021). Characterization of oxide layers formed on 10CrMo9-10 steel operated for a long time in the power industry. Bulletin of the Polish Academy of Sciences. Technical Sciences, 69(4).

DOI: 10.24425/bpasts.2021.137730

Google Scholar

[2] Habib, K. A., Saura, J. J., Ferrer, C., Damra, M. S., Giménez, E., & Cabedo, L. (2006). Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surface and coatings technology, 201(3-4), 1436-1443.

DOI: 10.1016/j.surfcoat.2006.02.011

Google Scholar

[3] Cheng, Z. (1954). Solar nanocomposite materials. Adv. Nanocomposite Technol, 3-46.

Google Scholar

[4] Turunen, E., Varis, T., Gustafsson, T. E., Keskinen, J., Fält, T., & Hannula, S. P. (2006). Parameter optimization of HVOF sprayed nanostructured alumina and alumina–nickel composite coatings. Surface and Coatings Technology, 200(16-17), 4987-4994.

DOI: 10.1016/j.surfcoat.2005.05.018

Google Scholar

[5] Liu, B., Wang, C., Bazri, S., Badruddin, I. A., Orooji, Y., Saeidi, S., ... & Mahian, O. (2021). Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technology, 377, 939-957.

DOI: 10.1016/j.powtec.2020.09.040

Google Scholar

[6] Liu, S., Tao, W., Li, J., Yang, Z., & Liu, F. (2005). Study on the formation process of Al2O3–TiO2 composite powders. Powder technology, 155(3), 187-192.

DOI: 10.1016/j.powtec.2005.05.048

Google Scholar

[7] Marin, E., Guzman, L., Lanzutti, A., Ensinger, W., & Fedrizzi, L. (2012). Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel. Thin Solid Films, 522, 283-288.

DOI: 10.1016/j.tsf.2012.08.023

Google Scholar

[8] Kumar, D., Singh, P., Murtaza, Q., & Walia, R. S. (2023). Synergistic effect of Al2O3–40% TiO2 coating on thermal conductivity and corrosion rate of SS 304 substrate. Sādhanā, 48(4), 266.

DOI: 10.1007/s12046-023-02341-7

Google Scholar

[9] Dai, J., Yang, J., Zhuge, L., & Wu, X. (2020). Al2O3–TiO2 composite coatings with enhanced anticorrosion properties for 316L stainless steel. Materials and Corrosion, 71(9), 1512-1520.

DOI: 10.1002/maco.201911449

Google Scholar

[10] Rubino, F., Poza, P., Pasquino, G., & Carlone, P. (2021). Thermal spray processes in concentrating solar power technology. Metals, 11(9), 1377.

Google Scholar

[11] Arıer, U. O. A., & Tepehan, F. Z. (2014). Influence of Al2O3: TiO2 ratio on the structural and optical properties of TiO2–Al2O3 nano-composite films produced by sol gel method. Composites Part B: Engineering, 58, 147-151.

DOI: 10.1016/j.compositesb.2013.10.023

Google Scholar

[12] Wang, D., & Bierwagen, G. P. (2009). Sol–gel coatings on metals for corrosion protection. Progress in organic coatings, 64(4), 327-338.

DOI: 10.1016/j.porgcoat.2008.08.010

Google Scholar

[13] Wielage, B., Wank, A., Pokhmurska, H., Grund, T., Rupprecht, C., Reisel, G., & Friesen, E. (2006). Development and trends in HVOF spraying technology. Surface and Coatings Technology, 201(5), 2032-2037.

DOI: 10.1016/j.surfcoat.2006.04.049

Google Scholar

[14] Bolelli, G., Lusvarghi, L., Manfredini, T., Pighetti Mantini, F., Polini, R., Turunen, E., ... & Hannula, S. P. (2007). Comparison between plasma-and HVOF-sprayed ceramic coatings. Part I: Microstructure and mechanical properties. International Journal of Surface Science and Engineering, 1(1), 38-61.

DOI: 10.1504/ijsurfse.2007.013620

Google Scholar

[15] Legoux, J. G., Arsenault, B., Bouyer, V., Moreau, C., & Leblanc, L. (2002). Evaluation of four high velocity thermal spray guns using WC-10% Co-4% Cr cermets. Journal of Thermal Spray Technology, 11, 86-94.

DOI: 10.1361/105996302770349014

Google Scholar

[16] Kumar, D., Murtaza, Q., Walia, R. S., & Singh, P. (2022). Comparative investigation on thermally sprayed Al2O3, Al2O3–13%(TiO2) and Al2O3–40%(TiO2) composite coatings from room to 400° C temperature. Surface Topography: Metrology and Properties, 10(1), 015043.

DOI: 10.21203/rs.3.rs-566802/v1

Google Scholar

[17] Frolov, V. A., Poklad, V. A., Ryabenko, B. V., & Viktorenkov, D. V. (2007). Technological special features of methods of supersonic thermal spraying. Welding International, 21(4), 315-322.

DOI: 10.1080/09507110701412047

Google Scholar

[18] Eraslan, F. S., & Gecu, R. (2023). Chemical composition optimization of Al2O3-TiO2 composite coatings for enhanced wear and corrosion resistance. Surface and Coatings Technology, 474, 130053.

DOI: 10.1016/j.surfcoat.2023.130053

Google Scholar

[19] Toma, F. L., Stahr, C. C., Berger, L. M., Saaro, S., Herrmann, M., Deska, D., & Michael, G. (2010). Corrosion resistance of APS-and HVOF-sprayed coatings in the Al 2 O 3-TiO 2 system. Journal of thermal spray technology, 19, 137-147.

DOI: 10.1007/s11666-009-9422-2

Google Scholar

[20] Vaghari, H., Sadeghian, Z., & Shahmiri, M. (2011). Investigation on synthesis, characterisation and electrochemical properties of TiO2–Al2O3

Google Scholar

[21] *** https://www.statgraphics.com/centurion-overview

Google Scholar