[1]
Gwoździk, M., Ullrich, C., Schimpf, C., Rafaja, D., Kulesza, S., & Bramowicz, M. (2021). Characterization of oxide layers formed on 10CrMo9-10 steel operated for a long time in the power industry. Bulletin of the Polish Academy of Sciences. Technical Sciences, 69(4).
DOI: 10.24425/bpasts.2021.137730
Google Scholar
[2]
Habib, K. A., Saura, J. J., Ferrer, C., Damra, M. S., Giménez, E., & Cabedo, L. (2006). Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surface and coatings technology, 201(3-4), 1436-1443.
DOI: 10.1016/j.surfcoat.2006.02.011
Google Scholar
[3]
Cheng, Z. (1954). Solar nanocomposite materials. Adv. Nanocomposite Technol, 3-46.
Google Scholar
[4]
Turunen, E., Varis, T., Gustafsson, T. E., Keskinen, J., Fält, T., & Hannula, S. P. (2006). Parameter optimization of HVOF sprayed nanostructured alumina and alumina–nickel composite coatings. Surface and Coatings Technology, 200(16-17), 4987-4994.
DOI: 10.1016/j.surfcoat.2005.05.018
Google Scholar
[5]
Liu, B., Wang, C., Bazri, S., Badruddin, I. A., Orooji, Y., Saeidi, S., ... & Mahian, O. (2021). Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technology, 377, 939-957.
DOI: 10.1016/j.powtec.2020.09.040
Google Scholar
[6]
Liu, S., Tao, W., Li, J., Yang, Z., & Liu, F. (2005). Study on the formation process of Al2O3–TiO2 composite powders. Powder technology, 155(3), 187-192.
DOI: 10.1016/j.powtec.2005.05.048
Google Scholar
[7]
Marin, E., Guzman, L., Lanzutti, A., Ensinger, W., & Fedrizzi, L. (2012). Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel. Thin Solid Films, 522, 283-288.
DOI: 10.1016/j.tsf.2012.08.023
Google Scholar
[8]
Kumar, D., Singh, P., Murtaza, Q., & Walia, R. S. (2023). Synergistic effect of Al2O3–40% TiO2 coating on thermal conductivity and corrosion rate of SS 304 substrate. Sādhanā, 48(4), 266.
DOI: 10.1007/s12046-023-02341-7
Google Scholar
[9]
Dai, J., Yang, J., Zhuge, L., & Wu, X. (2020). Al2O3–TiO2 composite coatings with enhanced anticorrosion properties for 316L stainless steel. Materials and Corrosion, 71(9), 1512-1520.
DOI: 10.1002/maco.201911449
Google Scholar
[10]
Rubino, F., Poza, P., Pasquino, G., & Carlone, P. (2021). Thermal spray processes in concentrating solar power technology. Metals, 11(9), 1377.
Google Scholar
[11]
Arıer, U. O. A., & Tepehan, F. Z. (2014). Influence of Al2O3: TiO2 ratio on the structural and optical properties of TiO2–Al2O3 nano-composite films produced by sol gel method. Composites Part B: Engineering, 58, 147-151.
DOI: 10.1016/j.compositesb.2013.10.023
Google Scholar
[12]
Wang, D., & Bierwagen, G. P. (2009). Sol–gel coatings on metals for corrosion protection. Progress in organic coatings, 64(4), 327-338.
DOI: 10.1016/j.porgcoat.2008.08.010
Google Scholar
[13]
Wielage, B., Wank, A., Pokhmurska, H., Grund, T., Rupprecht, C., Reisel, G., & Friesen, E. (2006). Development and trends in HVOF spraying technology. Surface and Coatings Technology, 201(5), 2032-2037.
DOI: 10.1016/j.surfcoat.2006.04.049
Google Scholar
[14]
Bolelli, G., Lusvarghi, L., Manfredini, T., Pighetti Mantini, F., Polini, R., Turunen, E., ... & Hannula, S. P. (2007). Comparison between plasma-and HVOF-sprayed ceramic coatings. Part I: Microstructure and mechanical properties. International Journal of Surface Science and Engineering, 1(1), 38-61.
DOI: 10.1504/ijsurfse.2007.013620
Google Scholar
[15]
Legoux, J. G., Arsenault, B., Bouyer, V., Moreau, C., & Leblanc, L. (2002). Evaluation of four high velocity thermal spray guns using WC-10% Co-4% Cr cermets. Journal of Thermal Spray Technology, 11, 86-94.
DOI: 10.1361/105996302770349014
Google Scholar
[16]
Kumar, D., Murtaza, Q., Walia, R. S., & Singh, P. (2022). Comparative investigation on thermally sprayed Al2O3, Al2O3–13%(TiO2) and Al2O3–40%(TiO2) composite coatings from room to 400° C temperature. Surface Topography: Metrology and Properties, 10(1), 015043.
DOI: 10.21203/rs.3.rs-566802/v1
Google Scholar
[17]
Frolov, V. A., Poklad, V. A., Ryabenko, B. V., & Viktorenkov, D. V. (2007). Technological special features of methods of supersonic thermal spraying. Welding International, 21(4), 315-322.
DOI: 10.1080/09507110701412047
Google Scholar
[18]
Eraslan, F. S., & Gecu, R. (2023). Chemical composition optimization of Al2O3-TiO2 composite coatings for enhanced wear and corrosion resistance. Surface and Coatings Technology, 474, 130053.
DOI: 10.1016/j.surfcoat.2023.130053
Google Scholar
[19]
Toma, F. L., Stahr, C. C., Berger, L. M., Saaro, S., Herrmann, M., Deska, D., & Michael, G. (2010). Corrosion resistance of APS-and HVOF-sprayed coatings in the Al 2 O 3-TiO 2 system. Journal of thermal spray technology, 19, 137-147.
DOI: 10.1007/s11666-009-9422-2
Google Scholar
[20]
Vaghari, H., Sadeghian, Z., & Shahmiri, M. (2011). Investigation on synthesis, characterisation and electrochemical properties of TiO2–Al2O3
Google Scholar
[21]
*** https://www.statgraphics.com/centurion-overview
Google Scholar