Optimising the HVOF Deposition Technology of Al2O3-40%TiO2 Coatings for Energy Industry Applications

Article Preview

Abstract:

The paper presents a systematic approach to optimize the HVOF deposition technology of Al2O3 40 TiO2 coatings for the protection of components in the energy industry. Key performance factors evaluated include scratch resistance, surface roughness, and friction coefficient, given their importance for the intended applications. By means of a comprehensive experimental program using the Design of Experiment (DOE) method, the main HVOF process parameters were investigated, such as Fuel-to-Oxygen ratio (F/O), Stand-off Distance (SOD), and Powder Feed Rate (PFR), to identify optimal deposition conditions. Scratch resistance tests revealed that increasing the F/O and reducing the SOD significantly improved the tribological properties of the coatings. Surface morphology analysis through optical and electron microscopy confirmed that optimized HVOF parameters lead to dense coatings with low roughness and minimal defects, essential characteristics for components subjected to wear and severe friction. Additionally, tribological measurements demonstrated a significant reduction in the coefficient of friction for the optimized coatings. The obtained results demonstrate the HVOF technology’s capability to produce Al2O3 40 TiO2 coatings with superior properties for protecting energy industry components operating under severe conditions. The presented optimization approach can serve as a guide for best practices in developing new coating systems with enhanced performance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 379)

Pages:

41-52

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I., D., Utu., G., Marginean., Iosif, Hulka., Viorel, Aurel, Şerban., Daniel, Cristea, Properties of the thermally sprayed Al2O3–TiO2 coatings deposited on titanium substrate, Int. J. Refract Met H. 51 (2015) 118-123.

DOI: 10.1016/j.ijrmhm.2015.03.009

Google Scholar

[2] Filofteia-Laura, Toma., Carl, Christoph, Stahr., Lutz-Michael, Berger., S., Saaro., Mathias, Herrmann., D., Deska., G., Michael, Corrosion Resistance of APS- and HVOF-Sprayed Coatings in the Al2O3-TiO2 System. J. Therm. Spray Techn. 19 (2010) 137-147

DOI: 10.1007/s11666-009-9422-2

Google Scholar

[3] Thankam, Sreekumar, Rajesh., Ravipudi, Venkata, Rao, An Experimental Investigation into the Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spr.ay Coating Process on EN24 Substrate and Parameter Optimization Using TLBO. J Mater. Sci. & Chem. Eng. 4 (6), (2016).

DOI: 10.1016/j.matpr.2017.12.079

Google Scholar

[4] James, W., Murray., Andrew, Siao, Ming, Ang., Zdenek, Pala., E., Shaw., Tanvir, Hussain, Suspension High Velocity Oxy-Fuel (SHVOF)-Sprayed Alumina Coatings: Microstructure, Nanoindentation and Wear. J. Therm. Spray Techn. 25(8) (2016) 1700-1710

DOI: 10.1007/s11666-016-0462-0

Google Scholar

[5] Vairamuthu, Raj., Mohamed, Sirajudeen, Mumjitha, Formation and surface characterization of nanostructured Al2O3-TiO2 coatings, B. Mater. Sci. 37 (2014) 1411-1418

DOI: 10.1007/s12034-014-0090-6

Google Scholar

[6] Erja, Turunen., Tommi, Varis., Tom, E., Gustafsson., Jari, Keskinen., Pertti, Lintunen., Teppo, Fält., Roman, Nowak., Simo-Pekka, Hannula, Process optimization for nanostructured HVOF-sprayed Al2O3-based ceramic coatings. Key Eng. Mat., 317-318 (2006) 545-548

DOI: 10.4028/www.scientific.net/kem.317-318.545

Google Scholar

[7] Xuesong, Fu., Jiulun, Fan., Wu, Yunhua., Xuechou, Zhou., Liu, Zengfu., Wang, Shouzhen., Baoyu, Gao, Comparative Study of Wc-20cr3c2-7ni and Al2o3-Tio2 Ceramic Coatings Prepared by HVOF or Aps Technology on the Salt Spray Corrosion (2024)

DOI: 10.2139/ssrn.4715836

Google Scholar

[8] Markus, Sauter., Venancio, Martínez, García., Andreas, Killinger, HVSFS Al2O3-TiO2 Coatings of Porous Aluminium Substrates, Therm. Spray Proc. itsc2022p0596 (2022) 596-600

DOI: 10.31399/asm.cp.itsc2022p0596

Google Scholar

[9] Khushneet, Singh., Mir, Irfan, Ul, Haq., Sanjay, Mohan, Tribological Behavior of Novel Al2O3-La2O3 HVOF Composite Coatings, Tribol. Int. 193 (2024) 109427

DOI: 10.1016/j.triboint.2024.109427

Google Scholar

[10] Monika, Michalak., Leszek, Latka., Paweł, Sokołowski., Filofteia-Laura, Toma., Hanna, Myalska., Hanna, Myalska., Alain, Denoirjean., Hélène, Ageorges, Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and S-HVOF methods, Surf. Coat. Tech., 404 (2020) 126463

DOI: 10.1016/j.surfcoat.2020.126463

Google Scholar

[11] Zhou, Jingzhong., Sun, Kuoteng., Huang, Songqiang., Cai, Weichen., Yangzhi, Wei., Liang, Meng., Zhaowei, Hu., Wenge, Li., Fabrication and Property Evaluation of the Al2O3-TiO2 Composite Coatings Prepared by Plasma Spray, Coatings 10(11) (2020) 1122

DOI: 10.3390/coatings10111122

Google Scholar

[12] Alexei, Richter., Lutz-Michael, Berger., Yoo, Jung, Sohn., Susan, Conze., Kerstin, Sempf., Robert, Vaßen, Impact of Al2O3-40 wt.% TiO2 feedstock powder characteristics on the sprayability, microstructure and mechanical properties of plasma sprayed coatings, J. Eur. Ceram. Soc., 39(16) (2019) 5391-5402

DOI: 10.1016/j.jeurceramsoc.2019.08.026

Google Scholar

[13] Leszek, Łatka., Aneta, Niemiec., Monika, Michalak., Paweł, Sokołowski, Tribological Properties of Al2O3 + TiO2 Coatings Manufactured by Plasma Spraying, Tribologia 283(1) (2019) 19-24

DOI: 10.5604/01.3001.0013.1431

Google Scholar

[14] N, K, Mishra., S, B, Mishra, Hot corrosion performance of LVOF sprayed Al2O3 –40% TiO2 coating on Superni 601 and Superco 605 superalloys at 800 and 900°C, B. Mater. Sci. 38 (2015) 1679–1685

DOI: 10.1007/s12034-015-0986-9

Google Scholar

[15] Pietro, Puddu., Septimiu, Popa., Giovanni, Bolelli., Peter, Krieg., Magdalena, Lassinantti, Gualtieri., Luca, Lusvarghi., Andreas, Killinger., Rainer, Gadow, Suspension HVOF spraying of TiO2 using a liquid-fueled torch, Surf. Coat. Tech. 349 (2018) 677-694

DOI: 10.1016/j.surfcoat.2018.06.062

Google Scholar

[16] G.A., Clavijo-Mejía., D.G., Espinosa-Arbeláez., Jennifer, Andrea, Hermann-Muñoz., A., L., Giraldo-Betancur., Juan, Muñoz-Saldaña, Effect of HVOF Process Parameters on TiO 2 Coatings: An Approach Using DoE and First-Order Process Maps. J. Therm. Spray Tech., 28 (2019) 1160-1172

DOI: 10.1007/s11666-019-00895-9

Google Scholar

[17] Satish, Tailor., Nitesh, Vashishtha., Ankur, Modi., S., C., Modi, High-Performance Al2O3 Coating by Hybrid-LVOF (Low-Velocity Oxyfuel) Process, J. Therm. Spray Tech., 29(5) (2020) 1134–1143

DOI: 10.1007/s11666-020-01033-6

Google Scholar

[18] I, V, Blinkov., D., S., Belov., A., I., Laptev., A., S., Anikeev., V., V., Ivanov, Flame sprayed and plasma sprayed Al2O3-TiO2 coatings, Phys.: Conf. Ser. 1954 (2021) 012003

DOI: 10.1088/1742-6596/1954/1/012003

Google Scholar

[19] Jolanta, Zimmerman, Numerical and experimental analysis of residual stresses induced in metal coatings thermally deposited (HVOF) on Al2O3 substrates. J. Theor. Appl. Mech. 54(3) (2016) 921-933

DOI: 10.15632/jtam-pl.54.3.921

Google Scholar

[20] Ankit, Tyagi., S., M., Pandey., Ravinderjit, Singh, Walia., Qasim, Murtaza., Ajay, Kumar, Effect of Temperature on the Sliding Wear Behavior of HVOF Sprayed Al2O3 Composite Coating, Adv. in Mater. & Mech. Eng. (2021) 23-28

DOI: 10.1007/978-981-16-0673-1_3

Google Scholar

[21] Dan A., Barshilia H.C., Chattopadhyay K., Basu B., Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review. Renewable and Sustainable Energy Reviews, 79 (2017) 1050-1077

DOI: 10.1016/j.rser.2017.05.062

Google Scholar

[22] Zhang K., Hao L., Du M., Mi J., Wang J.-N., Meng J., A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renewable and Sustainable Energy Reviews, 67 (2017) 1282-1299

DOI: 10.1016/j.rser.2016.09.083

Google Scholar

[23] Salvi S.S., Bhalla V., Taylor R.A., et al., Technological advances to maximize solar collector energy output: a review. J. Electron. Packaging 140(4) (2018) 040802

DOI: 10.1115/1.4041219

Google Scholar

[24] Xinkang D., Cong W., Tianmin W., Long Z., Buliang C., Ning R., Microstructure and spectral selectivity of Mo-Al2O3 solar selective absorbing coatings after annealing, Thin Solid Films, 516(12) (2008) 3971-3977

DOI: 10.1016/j.tsf.2007.07.193

Google Scholar

[25] Wang XY, Gao JH, Hu HB, Zhang HL, Liang LY, Javaid K, et al., High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity, Nanomater Energy 11(6) (2017) 1037

DOI: 10.1016/j.nanoen.2017.05.036

Google Scholar

[26] J. Visniakov, A. Janulevicius, A. Maneikis, I. Matulaitiene, A. Selskis, S. Stanionyte, A. Suchodolskis, Antireflection TiO2 coatings on textured surface grown by HiPIMS, Thin Solid Films 628, (2017) 190-195

DOI: 10.1016/j.tsf.2017.03.041

Google Scholar

[27] B.S. Richards, Single-material TiO2 double-layer antireflection coatings, Sol. Energy Mater. Sol. Cells 79(3), (2003)

DOI: 10.1016/s0927-0248(02)00473-7

Google Scholar