Effect of Infill Percentage and Pattern Variations on the Compressive Strength and Material Properties of 3D Printed HDPE Materials

Article Preview

Abstract:

This study examines how infill percentage and infill pattern affect the compressive strength of 3D-printed High-Density Polyethylene (HDPE) parts using Fused Deposition Modeling (FDM). Specimens were printed with infill densities of 15%, 30%, 60%, and 100% across three patterns: honeycomb, grid, and triangular. Compression tests followed ASTM D695 standards. Results show that compressive strength increases significantly with higher infill percentages, with fully solid (100%) samples reaching up to 43.35 MPa. Among patterns, the honeycomb design consistently outperformed grid and triangular structures due to its efficient stress distribution. At lower infill percentages, pattern choice had a stronger impact, while at higher densities, the infill percentage became the dominant factor. These findings offer practical guidelines for optimizing strength and efficiency in applications such as aerospace, automotive, and healthcare.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 379)

Pages:

9-15

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Umer, M. H., Rehman, M. A. U., Ali, S., Raza, A., Muzammil, L., Ijaz, M., Khan, M. B., & Zafar, M. Q. (2024). Significance of Infill Density on Mechanical Performance in Fused Deposition Modeling. MATEC Web of Conferences.

DOI: 10.1051/matecconf/202439801030

Google Scholar

[2] Abdulridha, H., & Abbas, T. (2023). Analyzing the Impact of FDM Parameters on Compression Strength and Dimensional Accuracy in 3D printed PLA Parts. Maǧallaẗ Al-Handasaẗ Wa-al-Tiknūlūǧiyā.

DOI: 10.30684/etj.2023.143615.1599

Google Scholar

[3] Dev, S., & Srivastava, R. (2021). Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: a case study.

DOI: 10.1007/S40964-021-00184-4

Google Scholar

[4] Suteja, T. J. (2024). Experimental Investigation of Infill Parameters Influence on Compressive Strength-to-Mass Ratio of PLA 3D Printed Part.Journal of Mechanical Engineering.

DOI: 10.24191/jmeche.v21i1.25358

Google Scholar

[5] Chihi, M., Tarfaoui, M., Qureshi, Y., Daly, M., & Bouraoui, C. (2023). Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-Printed carbon fiber reinforced polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials.

DOI: 10.1177/08927057231222805

Google Scholar

[6] Daly, M., Tarfaoui, M., Bouali, M., & Bendarma, A. (2024). Effects of Infill Density and Pattern on the Tensile Mechanical Behavior of 3D-Printed Glycolyzed Polyethylene Terephthalate Reinforced with Carbon-Fiber Composites by the FDM Process. Journal of Composites Science.

DOI: 10.3390/jcs8040115

Google Scholar

[7] Dakhil, G., Salih, R. M., & Hameed, A. M. (2023). Influence of Infill Pattern, Infill Ratio on Compressive Strength and Hardness of 3D Printed Polylactic Acid (PLA) Based Polymer. Journal of Applied Sciences and Nanotechnology.

DOI: 10.53293/jasn.2022.4745.1141

Google Scholar

[8] Hamed, M. A., & Abbas, T. F. (2023). The Impact of FDM Process Parameters on the Compression Strength of 3D Printed PLA Filaments for Dental Applications. Advances in Science and Technology Research Journal.

DOI: 10.12913/22998624/169468

Google Scholar

[9] Yadav, P., Sahai, A., & Sharma, R. S. (2021). Strength and Surface Characteristics of FDM-Based 3D Printed PLA Parts for Multiple Infill Design Patterns.Journal of The Institution of Engineers : Series C.

DOI: 10.1007/S40032-020-00625-Z

Google Scholar

[10] Wijayanto, S. E. Y., Handoko, R., Noel, J. C., Anggawirawan, T. W., & Suteja, T. J. (2022). Identifikasi jenis infill pattern pada proses 3d printing yang menghasilkan hasil cetak dengan kekuatan tekan dan panjang filamen yang optimal.Jurnal Rekayasa Mesin.

DOI: 10.21776/jrm.v13i2.1097

Google Scholar

[11] Christakopoulos, F., van Heugten, P. M. H., & Tervoort, T. A. (2022). Additive Manufacturing of Polyolefins. Polymers, 14(23), 5147.

DOI: 10.3390/polym14235147

Google Scholar

[12] Schirmeister, C. G., Hees, T., Licht, E. H., & Mülhaupt, R. (2019). 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 28, 152–159.

DOI: 10.1016/J.ADDMA.2019.05.003

Google Scholar

[13] Montoya-Ospina, M. C., Zeng, J., Tan, X., & Osswald, T. A. (2023). Material Extrusion Additive Manufacturing with Polyethylene Vitrimers. Polymers, 15(6), 1332.

DOI: 10.3390/polym15061332

Google Scholar

[14] Vidakis, N., Petousis, M., Maniadi, A., Papadakis, V. M., & Manousaki, A. (2022). MEX 3D Printed HDPE/TiO2 Nanocomposites Physical and Mechanical Properties Investigation. Journal of Composites Science, 6(7), 209.

DOI: 10.3390/jcs6070209

Google Scholar