Dynamic Recovery as a Strengthening Mechanism

Article Preview

Abstract:

Recovery usually softens strain hardened coarse grained metallic materials but it can increase the strength of ultrafine grained materials. The present work shows evidence that dynamic recovery can produce strain-hardening behavior in ultrafine grained aluminum processed by high pressure torsion. Mechanical testing reveals an increase in flow stress during low strain rate tensile tests and a decrease in strain rate during creep tests. No significant change is observed in the grain size. It is shown that this effect can be used to increase the uniform elongation of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 383)

Pages:

103-108

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Ma, T.D. Shen, X.L. Wu, Less is more, Nature Materials, 5 (2006) 515-516.

Google Scholar

[2] X. Liu, J.-K. Han, Y. Onuki, Y.O. Kuzminova, S.A. Evlashin, M. Kawasaki, K.-D. Liss, In Situ Neutron Diffraction Investigating Microstructure and Texture Evolution upon Heating of Nanostructured CoCrFeNi High-Entropy Alloy, Advanced Engineering Materials, 25 (2023) 2201256.

DOI: 10.1002/adem.202201256

Google Scholar

[3] A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, R.Z. Valiev, Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation, Scripta Materialia, 37 (1997) 1089-1094.

DOI: 10.1016/s1359-6462(97)00210-8

Google Scholar

[4] R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Materialia, 49 (2003) 669-674.

DOI: 10.1016/s1359-6462(03)00395-6

Google Scholar

[5] S. Wu, Z. Kou, Q. Lai, S. Lan, S.S. Katnagallu, H. Hahn, S. Taheriniya, G. Wilde, H. Gleiter, T. Feng, Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries, Nature Communications, 13 (2022) 5468.

DOI: 10.1038/s41467-022-33257-1

Google Scholar

[6] J. Gubicza, Annealing-Induced Hardening in Ultrafine-Grained and Nanocrystalline Materials, Advanced Engineering Materials, 22 (2020) 1900507.

DOI: 10.1002/adem.201900507

Google Scholar

[7] X. Huang, N. Hansen, N. Tsuji, Hardening by Annealing and Softening by Deformation in Nanostructured Metals, Science, 312 (2006) 249-251.

DOI: 10.1126/science.1124268

Google Scholar

[8] O. Renk, V. Maier-Kiener, I. Issa, J.H. Li, D. Kiener, R. Pippan, Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: Their relation to intergranular dislocation accommodation, Acta Materialia, 165 (2019) 409-419.

DOI: 10.1016/j.actamat.2018.12.002

Google Scholar

[9] O. Renk, R. Pippan, Anneal Hardening in Single Phase Nanostructured Metals, Materials Transactions, 64 (2023) 1464-1473.

DOI: 10.2320/matertrans.mt-mf2022029

Google Scholar

[10] A.P. Carvalho, A. Liang, M. Kawasaki, L. Cupertino-Malheiros, P.S. Branicio, R.B. Figueiredo, Strengthening nanostructured metals through dynamic recovery, Journal of Materials Research and Technology, 35 (2025) 754-763.

DOI: 10.1016/j.jmrt.2025.01.053

Google Scholar

[11] R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Progress in Materials Science, 137 (2023) 101131.

DOI: 10.1016/j.pmatsci.2023.101131

Google Scholar

[12] R.B. Figueiredo, T.G. Langdon, Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity, Journal of Materials Research and Technology, 14 (2021) 137-159.

DOI: 10.1016/j.jmrt.2021.06.016

Google Scholar

[13] R.B. Figueiredo, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in metals, Journal of Materials Science, 57 (2022) 5210-5229.

DOI: 10.1007/s10853-022-06919-0

Google Scholar

[14] L. Bhatta, I. Lee, R.B. Figueiredo, B.K. Bay, M. Kawasaki, Digital Image Correlation Analysis of Uniform Deformation and Necking in Solid-State Welded Nanocrystalline Aluminum via High-Pressure Torsion, Advanced Engineering Materials, 26 (2024) 2400439.

DOI: 10.1002/adem.202400439

Google Scholar

[15] N. Kamikawa, T. Hirochi, T. Furuhara, Strengthening Mechanisms in Ultrafine-Grained and Sub-grained High-Purity Aluminum, Metallurgical and Materials Transactions A, 50 (2019) 234-248.

DOI: 10.1007/s11661-018-5007-3

Google Scholar

[16] C.Y. Yu, P.W. Kao, C.P. Chang, Transition of tensile deformation behaviors in ultrafine-grained aluminum, Acta Materialia, 53 (2005) 4019-4028.

DOI: 10.1016/j.actamat.2005.05.005

Google Scholar