[1]
E. Ma, T.D. Shen, X.L. Wu, Less is more, Nature Materials, 5 (2006) 515-516.
Google Scholar
[2]
X. Liu, J.-K. Han, Y. Onuki, Y.O. Kuzminova, S.A. Evlashin, M. Kawasaki, K.-D. Liss, In Situ Neutron Diffraction Investigating Microstructure and Texture Evolution upon Heating of Nanostructured CoCrFeNi High-Entropy Alloy, Advanced Engineering Materials, 25 (2023) 2201256.
DOI: 10.1002/adem.202201256
Google Scholar
[3]
A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, R.Z. Valiev, Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation, Scripta Materialia, 37 (1997) 1089-1094.
DOI: 10.1016/s1359-6462(97)00210-8
Google Scholar
[4]
R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Materialia, 49 (2003) 669-674.
DOI: 10.1016/s1359-6462(03)00395-6
Google Scholar
[5]
S. Wu, Z. Kou, Q. Lai, S. Lan, S.S. Katnagallu, H. Hahn, S. Taheriniya, G. Wilde, H. Gleiter, T. Feng, Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries, Nature Communications, 13 (2022) 5468.
DOI: 10.1038/s41467-022-33257-1
Google Scholar
[6]
J. Gubicza, Annealing-Induced Hardening in Ultrafine-Grained and Nanocrystalline Materials, Advanced Engineering Materials, 22 (2020) 1900507.
DOI: 10.1002/adem.201900507
Google Scholar
[7]
X. Huang, N. Hansen, N. Tsuji, Hardening by Annealing and Softening by Deformation in Nanostructured Metals, Science, 312 (2006) 249-251.
DOI: 10.1126/science.1124268
Google Scholar
[8]
O. Renk, V. Maier-Kiener, I. Issa, J.H. Li, D. Kiener, R. Pippan, Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: Their relation to intergranular dislocation accommodation, Acta Materialia, 165 (2019) 409-419.
DOI: 10.1016/j.actamat.2018.12.002
Google Scholar
[9]
O. Renk, R. Pippan, Anneal Hardening in Single Phase Nanostructured Metals, Materials Transactions, 64 (2023) 1464-1473.
DOI: 10.2320/matertrans.mt-mf2022029
Google Scholar
[10]
A.P. Carvalho, A. Liang, M. Kawasaki, L. Cupertino-Malheiros, P.S. Branicio, R.B. Figueiredo, Strengthening nanostructured metals through dynamic recovery, Journal of Materials Research and Technology, 35 (2025) 754-763.
DOI: 10.1016/j.jmrt.2025.01.053
Google Scholar
[11]
R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Progress in Materials Science, 137 (2023) 101131.
DOI: 10.1016/j.pmatsci.2023.101131
Google Scholar
[12]
R.B. Figueiredo, T.G. Langdon, Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity, Journal of Materials Research and Technology, 14 (2021) 137-159.
DOI: 10.1016/j.jmrt.2021.06.016
Google Scholar
[13]
R.B. Figueiredo, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in metals, Journal of Materials Science, 57 (2022) 5210-5229.
DOI: 10.1007/s10853-022-06919-0
Google Scholar
[14]
L. Bhatta, I. Lee, R.B. Figueiredo, B.K. Bay, M. Kawasaki, Digital Image Correlation Analysis of Uniform Deformation and Necking in Solid-State Welded Nanocrystalline Aluminum via High-Pressure Torsion, Advanced Engineering Materials, 26 (2024) 2400439.
DOI: 10.1002/adem.202400439
Google Scholar
[15]
N. Kamikawa, T. Hirochi, T. Furuhara, Strengthening Mechanisms in Ultrafine-Grained and Sub-grained High-Purity Aluminum, Metallurgical and Materials Transactions A, 50 (2019) 234-248.
DOI: 10.1007/s11661-018-5007-3
Google Scholar
[16]
C.Y. Yu, P.W. Kao, C.P. Chang, Transition of tensile deformation behaviors in ultrafine-grained aluminum, Acta Materialia, 53 (2005) 4019-4028.
DOI: 10.1016/j.actamat.2005.05.005
Google Scholar