Study of Silver Supported on Zinc Oxide Catalyst for the Oxidation of Diesel Particulate Matter

Article Preview

Abstract:

This research investigated the impact of Ag content supported on ZnO catalysts regarding the oxidation activity of DPM. The catalyst was synthesised through the doping of varying Ag concentrations on ZnO (e.g., 2, 4, 8, and 16 wt%) employing the incipient wetness impregnation technique. Characterisation of the synthesised catalyst was conducted utilising XRD, SEM, TEM, and H₂-TPR. The evaluation of oxidation activity and stability was performed through TGA. The characterisation findings substantiated the successful integration of Ag onto ZnO across all experimental conditions investigated. H₂-TPR profiles revealed two distinct regions of H₂ consumption: 1) at 200-400 °C, and 2) at 400-700 °C. These regions were attributed to the reduction of Ag₂O to Ag⁰ and the liberation of lattice oxygen from ZnO, respectively. An increase in Ag concentrations resulted in enhanced reduction reactions within the temperature spectrum of 400 to 700 °C, demonstrating a favourable trend towards improved reaction efficiency. The oxidation performance of DPM was markedly augmented by the Ag content, particularly at 16 wt%. Stability assessments indicated a consistent capability in facilitating DPM oxidation across five cycles. The concentration of oxygen exhibited a significant influence on the oxidation activity of DPM.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] C. Lee, J.Il Park, Y.G. Shul, H. Einaga, Y. Teraoka, Appl. Catal. B. 185 (2015) 174–175.

Google Scholar

[2] E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Appl. Catal. B. 91 (2009) 489.

DOI: 10.1016/j.apcatb.2009.06.019

Google Scholar

[3] G. Corro, J.A. Flores, F. Pacheco-Aguirre, U. Pal, F. BanÌuelos, R. Torralba, and O. Olivares Xometl, ACS Omega. 4 (2019) 5795.

DOI: 10.1021/acsomega.8b03142

Google Scholar

[4] B. Sawatmongkhon, K. Theinnoi, T. Wongchang, C. Haoharn, C. Wongkhorsub, E. Sukjit, A. Tsolakis, App.l Catal. A. Gen. 574 (2019) 33.

DOI: 10.1016/j.apcata.2019.01.020

Google Scholar

[5] K. ichi Shimizu, H. Kawachi, A. Satsuma, Appl. Catal. B. 96 (2010) 169.

Google Scholar

[6] J. Zokoe, X. Feng, C. Su, P.J. McGinn, Catalysts. 9 (2019) 684.

Google Scholar

[7] L.F. Nascimento, J.F. Lima, P.C. de Sousa Filho, O.A. Serra, J Environ Sci (China). 73 (2018) 58.

Google Scholar

[8] J. Fang, Z. Qin, Z. Meng, Y. Jiang, J. Liu, Q. Zhang, J. Tan, Energy and Fuels. 34 (2020) 2185.

Google Scholar

[9] G. Corro, E. Vidal, S. Cebada, U. Pal, F. Bañuelos, D. Vargas, E. Guilleminot, Appl. Catal. B. 216 (2017) 1.

Google Scholar

[10] Zhang, J. Fang, Z. Meng, C. Chen, Z. Qin, RSC Adv. 10 (2020) 33436.

Google Scholar

[11] M. J. Kim, E. J. Lee, E. Lee, D.H. Kim, D.W. Lee, C.H. Kim, K.Y. Lee, Appl. Surf .Sci. 569 (2021).

Google Scholar

[12] J. Fang, Q. Zhang, Z. Meng, Y. Luo, J. Ou, Y. Du, Z. Zhang, Journal of the Energy Institute. 93 (2020) 1942.

Google Scholar

[13] K. Singh, V. Gupta, Heliyon. 9 (2023) e16944.

Google Scholar

[14] S.H. Shahcheraghi, G. R. Khayati, Transactions of Nonferrous Metals Society of China. 24 (2014) 2991.

Google Scholar

[15] L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari, K. A. Matori, Materials. 10 (2017) 402.

DOI: 10.3390/ma10040402

Google Scholar

[16] B. Sarkodie, Y. Hu, W. Bi, J. Jiang, C. Li, Appl. Surf. Sci. 548 (2021) 149241.

Google Scholar

[17] F. Li, Y. Yuan, J. Luo, Q. Qin, J. Wu, Z. Li, X. Huang, Appl. Surf. Sci. 256 (2010) 6076.

Google Scholar

[18] G. Li, X. Zhang, W. Feng, X. Fang, J. Liu, Corros. Sci. 134 (2018) 140.

Google Scholar

[19] M.V. Grabchenko, G.V. Mamontov, V.I. Zaikovskii, V. La Parola, L.F. Liotta, O.V. Vodyankina, Appl. Catal. B. 260 (2020) 118148.

DOI: 10.1016/j.apcatb.2019.118148

Google Scholar

[20] V.V. Dutov, G.V. Mamontov, V.I. Zaikovskii, O.V. Vodyankina, Catal Today. 278 (2016) 150.

Google Scholar

[21] F. Qi, J. Peng, Z. Liang, J. Guo, J. Liu, T. Fang, H. Mao, Environmental Science and Ecotechnology. 22 (2024) 100443.

DOI: 10.1016/j.ese.2024.100443

Google Scholar

[22] P. Promhuad, B. Sawatmongkhon, K. Theinnoi, T. Wongchang, N. Chollacoop, E. Sukjit, S. Tunmee, A. Tsolakis, ACS Omega. 9 (2024) 19282.

DOI: 10.1021/acsomega.4c00218

Google Scholar

[23] G. Corro, S. Cebada, U. Pal, J.L. G. Fierro, J. Alvarado, Appl. Catal. B. 165 (2015) 555.

Google Scholar

[24] H.S. Chong, S.K. Aggarwal, K.O. Lee, S.Y. Yang, H. Seong, Combustion Science and Technology. 185 (2013) 95.

Google Scholar

[25] R. Ramdas, E. Nowicka, R. Jenkins, D. Sellick, C. Davies, S. Golunski, Appl. Catal. B. 176–177 (2015) 436.

Google Scholar

[26] H.M. Oo, P. Karin, C. Charoenphonphanich, N. Chollacoop, K. Hanamura, Journal of the Energy Institute. 96 (2021) 181.

Google Scholar

[27] P. Pu, J. Fang, Q. Zhang, Y. Yang, Z. Qin, Z. Meng, S. Pan, ACS Omega. 6 (2021) 17372.

Google Scholar

[28] T.M. Mogashane, J.P. Maree, L. Mokoena, Minerals. 14 (2024) 826.

Google Scholar

[29] L. Zhao, Y. Zhang, S. Bi, Q. Liu, RSC Adv. 9 (2019) 19236.

Google Scholar

[30] R. Prasad and V.R. Bella, Bulletin of Chemical Reaction Engineering and Catalysis. 5 (2010) 69.

Google Scholar