Effect of Metal Cation Composition in Magnesium-Aluminum Layered Double Hydroxide during Adsorptive Removal of Cr(VI) from Aqueous Solution

Article Preview

Abstract:

Layered double hydroxides (LDHs) have achieved remarkable attention these days for their promising applications ins water remediation, owing to their excellent anion exchange capacity and robust structured modification possibility. In this study, Mg-Al LDH of different metal ion ratio (2:1, 3:1 and 4:1) were synthesized by co-precipitation and urea hydrolysis method. The as synthesized LDHs were characterized by Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDX). A series of Cr (VI) removal efficacy were studied by batch adsorption method. The results indicated that removal of Cr (VI) from aqueous solution is pH dependent and a maximum Cr (VI) removal was achieved at pH 5. The Mg-Al LDH containing 2:1 metal ion ratio showed highest adsorption capacity irrespective of method of preparation. The equilibrium adsorption data are well supported by Langmuir isotherm (LI) and maximum loading capacities for Cr (VI) removal were 37.26 and 55.26 mg g−1 for LDH MAC-21 and MAU-21, respectively suggesting that LDH obtained by urea hydrolysis method have shown better performance. The equilibrium kinetics data are well supported by pseudo-second order model for all LDH tested samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 385)

Pages:

121-134

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.M. Cardinale, C. Carbone, S. Molinari, G. Salviulo, F. Ardini, MgAl-NO₃ LDH: Adsorption isotherms and multivariate optimization for Cr(VI) removal, Chemistry. 5(1) (2023) 633–645.

DOI: 10.3390/chemistry5010045

Google Scholar

[2] S. Sahu, P. Kar, N. Bishoyi, L. Mallik, R.K. Patel, Synthesis of polypyrrole-modified layered double hydroxides for efficient removal of Cr(VI), J. Chem. Eng. Data. 64 (10) (2019) 4357–4368.

DOI: 10.1021/acs.jced.9b00444

Google Scholar

[3] C. Namasivayam, D. Sangeetha, Removal of chromium(VI) by ZnCl₂ activated coir pith carbon, Toxicol. Environ. Chem. 88(2) (2006) 219–233. https://doi.org/10.1080/02772240 600661130.

DOI: 10.1080/02772240600661130

Google Scholar

[4] G.U. Chibuike, S.C. Obiora, Heavy metal polluted soils: Effect on plants and bioremediation methods, Appl. Environ. Soil Sci. 2014 (2014) 1–12. https://doi.org/10.11 55/2014/752708.

DOI: 10.1155/2014/752708

Google Scholar

[5] L. Deng, Z. Shi, X. Peng, Adsorption of Cr(VI) onto a magnetic CoFe₂O₄/MgAl-LDH composite and mechanism study, RSC Adv. 5(61) (2015) 49791–49801. https://doi.org/10. 1039/C5RA06178D.

DOI: 10.1039/c5ra06178d

Google Scholar

[6] X. Yuan, Y. Wang, J. Wang, C. Zhou, Q. Tang, X. Rao, Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal, Chem. Eng. J. 221 (2013) 204–213.

DOI: 10.1016/j.cej.2013.01.090

Google Scholar

[7] X. Zhang, Y. Wang, J. Chen, L. Zhou, Q. Li, H. Zhang, et al., Hexavalent chromium removal from aqueous solution by adsorption on modified zeolites coated with Mg-layered double hydroxides, Environ. Sci. Pollut. Res. 26(32) (2019) 32928–32941.

DOI: 10.1007/s11356-019-06410-5

Google Scholar

[8] F. Zhang, N. Du, H. Li, X. Liang, W. Hou, Sorption of Cr(VI) on Mg–Al–Fe layered double hydroxides synthesized by a mechanochemical method, RSC Adv. 4(87) (2014) 46823–46830.

DOI: 10.1039/C4RA07553F

Google Scholar

[9] M. Laipan, J. Zhu, Y. Liang, Q. Zhang, Y. Wu, X. Wang, Calcined Mg/Al-LDH for acidic wastewater treatment: Simultaneous neutralization and contaminant removal, Appl. Clay Sci. 153 (2018) 46–53.

DOI: 10.1016/j.clay.2017.12.002

Google Scholar

[10] H. Asiabi, Y. Yamini, M. Shamsayei, Highly selective and efficient removal of arsenic(V), chromium(VI) and selenium(VI) oxyanions by layered double hydroxide intercalated with zwitterionic glycine, J. Hazard. Mater. 339 (2017) 239–247. https://doi.org/10.1016/ j.jhazmat.2017.06.042.

DOI: 10.1016/j.jhazmat.2017.06.042

Google Scholar

[11] L. Ma, H. Zhu, Z. Zhuang, Q. Yan, L. Wang, Selective and efficient removal of toxic oxoanions of As(III), As(V), and Cr(VI) by layered double hydroxide intercalated with MoS₄²⁻, Chem. Mater. 29(7) (2017) 3274–3284. https://doi.org/10.1021/acs.chemmater. 7b00618.

DOI: 10.1021/acs.chemmater.7b00618

Google Scholar

[12] S. Chen, Y. Zhang, L. Zhou, W. Liu, Y. Huang, H. Wang, et al., Simultaneous and efficient removal of Cr(VI) and methyl orange on LDHs decorated porous carbons, Chem. Eng. J. 352 (2018) 306–315.

DOI: 10.1016/j.cej.2018.07.012

Google Scholar

[13] L. Tang, X. Xie, C. Li, Y. Xu, W. Zhu, L. Wang, Regulation of structure and anion-exchange performance of layered double hydroxide: Function of the metal cation composition of a brucite-like layer, Mater. 15(22) (2022) 7983. https://doi.org/10. 3390/ma15227983.

DOI: 10.3390/ma15227983

Google Scholar

[14] L. Tan, H. Li, M. Liu, Characterization of CMC–LDH beads and their application in the removal of Cr(VI) from aqueous solution, RSC Adv. 8(23) (2018) 12870–12878.

DOI: 10.1039/C8RA00633D

Google Scholar

[15] G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci. 153 (2018) 172–186.

DOI: 10.1016/j.clay.2017.12.021

Google Scholar

[16] Q. Han, A. Wang, J. Zhang, Research on the removal of Cr(VI) ions from wastewater by Mg/Al-layered double oxides, Mater. Today Chem. 29 (2023) 101466.

DOI: 10.1016/j.mtchem.2023.101466

Google Scholar

[17] P. Basnet, P.K. Ojha, D. Gyawali, K.N. Ghimire, H. Paudyal, Thermochemical study of Cr(VI) sequestration onto chemically modified Areca catechu and its recovery by desorptive precipitation method, Heliyon. 8(8) (2022) e10305. https://doi.org/10.1016/ j.heliyon.2022.e10305.

DOI: 10.1016/j.heliyon.2022.e10305

Google Scholar

[18] W. Mo, Y. Yang, C. He, Y. Huang, J. Feng, Excellent adsorption properties of Mg/Al/Fe LDOs for Cr(VI) in water, J. Environ. Chem. Eng. 11(5) (2023) 111069. https://doi.org/10. 1016/j.jece.2023.111069.

DOI: 10.1016/j.jece.2023.111069

Google Scholar

[19] C. Chen, M. Luo, F. Chen, C. Huang, C. Zhu, H. Wu, Fe(III) complexed polydopamine modified Mg/Al layered double hydroxide enhances the removal of Cr(VI) from aqueous solutions, J. Polym. Environ. 30(6) (2022) 2547–2558.

DOI: 10.1007/s10924-022-02375-8

Google Scholar

[20] H.S. Panda, R. Srivastava, D. Bahadur, Stacking of lamellae in Mg/Al hydrotalcites: Effect of metal ion concentrations on morphology, Mater. Res. Bull. 43(6) (2008) 1448–1455.

DOI: 10.1016/j.materresbull.2007.06.037

Google Scholar

[21] S. Khanal, Y. Lu, D. Jin, S. Xu, Effects of layered double hydroxides on the thermal and flame retardant properties of intumescent flame retardant high-density polyethylene composites, Fire Mater. 46(1) (2022) 107–116.

DOI: 10.1002/fam.2951

Google Scholar

[22] H.-P. Chao, Y.-C. Wang, H.N. Tran, Removal of hexavalent chromium from groundwater by Mg/Al-layered double hydroxides using characteristics of in-situ synthesis, Environ. Pollut. 243 (2018) 620–629.

DOI: 10.1016/j.envpol.2018.08.033

Google Scholar

[23] J. Wang, X. Liu, Z. Zhang, Y. Huang, T. Zhang, Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI), ACS Sustain. Chem. Eng. 5(8) (2017) 7165–7174. https://doi.org/10.1021/acssuschemeng. 7b01347.

DOI: 10.1021/acssuschemeng.7b01347

Google Scholar

[24] J. Ashtami, P.V. Mohanan, Co-precipitation-hydrothermal mediated synthesis, characterization and toxicity evaluation of 2D Zn–Al LDHs in human osteoblast cells, J. Mater. Sci. 58(43) (2023) 16809–16821.

DOI: 10.1007/s10853-023-09082-2

Google Scholar

[25] P. Karthikeyan, S. Meenakshi, Synthesis and characterization of Zn–Al LDHs/activated carbon composite and its adsorption properties for phosphate and nitrate ions in aqueous medium, J. Mol. Liq. 296 (2019) 111766.

DOI: 10.1016/j.molliq.2019.111766

Google Scholar

[26] Q. Han, A. Wang, J. Zhang, Research on the removal of Cr(VI) ions from wastewater by Mg/Al-layered double oxides, Mater. Today Chem. 29 (2023) 101466. https://doi.org/10. 1016/j.mtchem.2023.101466.

DOI: 10.1016/j.mtchem.2023.101466

Google Scholar

[27] W. Wang, J. Zhou, G. Achari, J. Yu, W. Cai, Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies, Colloids Surf. A Physicochem. Eng. Asp. 457(2014) 33–40.

DOI: 10.1016/j.colsurfa.2014.05.034

Google Scholar

[28] A.U. Rajapaksha, H. Seo, J. Kim, D. Sarkar, Y.S. Ok, A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances, Sci. Total Environ. 809 (2022) 152055.

DOI: 10.1016/j.scitotenv.2021.152055

Google Scholar

[29] M.M. Islam, A.A. Mohana, M.A. Rahman, M. Rahman, R. Naidu, M.M. Rahman, A comprehensive review of the current progress of chromium removal methods from aqueous solution, Toxics. 11(3) (2023) 252.

DOI: 10.3390/toxics11030252

Google Scholar

[30] I.U. Islam, M. Ahmad, M. Ahmad, S. Rukh, I. Ullah, Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw, Eur. J. Chem. 13(1) (2022) 78–90.

DOI: 10.5155/eurjchem.13.1.78-90.2189

Google Scholar

[31] S. Ren, Y. Wang, Z. Han, Q. Zhang, C. Cui, Synthesis of polydopamine modified MgAl-LDH for high efficient Cr(VI) removal from wastewater, Environ. Res. 215 (2022) 114191.

DOI: 10.1016/j.envres.2022.114191

Google Scholar

[32] N.B. Benselka-Hadj Abdelkader, A. Bentouami, Z. Derriche, N. Bettahar, L.-C. De Ménorval, Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution, Chem. Eng. J. 169(1–3) (2011) 231–238.

DOI: 10.1016/j.cej.2011.03.019

Google Scholar

[33] M. Khitous, Z. Salem, D. Halliche, Effect of interlayer anions on chromium removal using Mg–Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies, Chin. J. Chem. Eng. 24(4) (2016) 433–445.

DOI: 10.1016/j.cjche.2015.11.018

Google Scholar

[34] O. Agboola, T. Oyebanji, H. Abdulkareem, S. Durodola, F. Babalola, Adsorptive removal of Fe and Cd from the textile wastewater using ternary bio-adsorbent: adsorption, desorption, adsorption isotherms and kinetic studies, Discov. Sustain. 5(1) (2024) 312.

DOI: 10.1007/s43621-024-00523-9

Google Scholar

[35] E. Ramos-Ramírez, N.L.G. Ortega, C.A.C. Soto, M.T.O. Gutiérrez, Adsorption isotherm studies of chromium(VI) from aqueous solutions using sol–gel hydrotalcite-like compounds, J. Hazard. Mater. 172(2–3) (2009) 1527–1531. https://doi.org/10. 1016/j.jhazmat.2009.08.023.

DOI: 10.1016/j.jhazmat.2009.08.023

Google Scholar

[36] T. Kameda, E. Kondo, T. Yoshioka, Preparation of Mg–Al layered double hydroxide doped with Fe²⁺ and its application to Cr(VI) removal, Sep. Purif. Technol. 122(2014) 12–16.

DOI: 10.1016/j.seppur.2013.10.033

Google Scholar

[37] Gh. Eshaq, A.M. Rabie, A.A. Bakr, A.H. Mady, A.E. ElMetwally, Cr(VI) adsorption from aqueous solutions onto Mg–Zn–Al LDH and its corresponding oxide, Desalination Water Treat. 57(43) (2016) 20377–20387.

DOI: 10.1080/19443994.2015.1110840

Google Scholar

[38] D. Huang, X. Liu, F. Zeng, L. Luo, P. Li, Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid, Bioresour. Technol. 276 (2019) 127–132. https://doi.org/.

DOI: 10.1016/j.biortech.2018.12.114

Google Scholar

[39] J. Ren, S. Zhang, Y. Wang, H. Shi, C. Zhen, Cr(VI) adsorption by Mg/Al layered double hydroxide-modified Sphagnum moss cellulose gel: Performance and mechanism, Molecules. 30(8) (2025) 1796.

DOI: 10.3390/molecules30081796

Google Scholar