Search:

  • 479 1=

Search Options

Sort by:

Publication Type:

Open access:

Publication Date:

Periodicals:

Search results

Online since: May 2014
Authors: Kamineni Pitcheswara Rao, Yellapregada Venkata Rama Krishna Prasad, Norbert Hort, Karl Ulrich Kainer, Kalidass Suresh
The map shows two domains,both in the temperature range of 350 oC to 550 oC with one in the lower strain rate range of 0.0003 s-1 to 0.01 s-1, and other at higher strain rate range of 1 s-1 to 10 s-1.
The map also exhibits a region of change over from Domain 1 to Domain 2, in the strain rate range of 0.01 s-1 to 1 s-1.
The microstructuresobtained on the specimens forged at 450 oC/0.01 mm s-1, 400 oC/10 mm s-1 500 oC/10 mm s-1, and 450 oC/1 mm s-1are shown in Fig. 6 (a-d).
References [1] R.S.
Sci. 24 (1982) 479–493
Online since: September 2012
Authors: Ling Chen, Bo Lun Chen
Table 1.
It is obvious that the possible solutions are S0=(1,1,0,0), S1=(0,1,1,0), and S2=(0,0,1,1,).
From Table 1 we can see that f(S0)=1/3, f(S1)=1/4, f(S2)=1/3.
Obviously, the global optimum is S0=(1,1,0,0) and S2=(0,0,1,1).
Since , , , , the expected solution of the problem is , which is not equal to the optimal solution of the problem x*=(1,1,0,0) or (0,0,1,1).
Online since: October 2006
Authors: Jung Won Huh, Kiseok Kwak
(1) where E is the Young's modulus of the pile, A is the cross sectional area of the pile, x is the depth x Side Friction Spring Linear: kst at node i Nonlinear: t-z curve at node i End Bearing Spring Linear: ksq at node n+1 Nonlinear: q-z curve at node n+1 Node 1 2 i-1 i i+1 n n+1 z t z Fig. 1 Axial pile-soil system.
Material properties of the pile are given in Table 1.
The information is summarized in Table 1.
Results in Table 2 clearly indicate that failure probabilities estimated by the proposed algorithm are very similar to MCS, however, the ratio of number of deterministic analyses for MCS to that of the proposed algorithm ranges from 479 to 30303.
References [1] V.
Online since: June 2015
Authors: A. Rahmat, Mohd Sobri Idris, S.P. Soo, Rozana A.M. Osman
Table 1: Structural parameters for LiCoO2 as a test of the refinement methodology.
Refinement data of LiCoO2 a/Å 2.8157 (1) c/ Å 14.054 (1) Volume/ Å3 96.501 (2) Oxygen, Z 0.2431 (1) 3a Li/Co occ. 0.998 (3)/0.002 (3) 3b Co/Li occ. 0.998 (3)/0.002 (3) 6c O occ. 1.00 (1) 3a Uiso 0.01 (1) 3b Uiso 0.007 (1) 6c Uiso 0.001 (2) Rwp 4.00 % Rp 2.37 % χ2 1.610 The refined Uiso from LiCoO2 were used in the subsequence refinement of structural data on LiNi0.7Mn0.1Co0.2O2.
Table 2: Refined structural data of LiNi0.7Mn0.1Co0.2O2 as a function of temperatures. 850°C 900°C 950°C a/Å 2.8676 (1) 2.8687 (1) 2.8765 (1) c/ Å 14.193 (1) 14.197 (1) 14.223 (1) Volume/ Å3 101.077 (2) 101.191 (1) 101.914 (1) Oxygen, Z 0.2449 (1) 0.2449 (1) 0.2475 (1) 3a Li/Ni occ. 0.969 (2)/0.031 (2) 0.970 (1)/0.030 (1) 0.914 (1)/0.086 (1) 3b Ni/Li occ. 0.669 (2)/0.031 (2) 0.670 (1)/0.030 (1) 0.614 (1)/0.086 (1) 6c O occ. 0.969 (6) 0.959 (4) 0.904 (4) 3a Uiso 0.01 0.01 0.01 3b Uiso 0.007 0.007 0.007 6c Uiso 0.001 0.001 0.001 Rwp 3.91 % 5.08 % 6.17 % Rp 3.16 % 3.35 % 3.90 % χ2 0.6960 0.8814 0.9400 Fig. 3: Rietveld refinement of XRD data for LiNi0.7Mn0.1Co0.2O2 that heated at 900°C.
References [1] M.
Osman, Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package, Advanced Materials Research, 795 (2013) 479-482.
Online since: February 2003
Authors: Sergey I. Sidorenko, Yu.N. Makogon, E.P. Pavlova, A. Csik, T.I. Verbitskaya, Yu.V. Nesterenko, King-Ning Tu
Sidorenko 1 , K.N.
Makogon 1, A.
Pavlova 1, T.I.
Verbitskaya 1, Yu.V.
Harper: Thin Solid Films Vol. 23 (1994), p. 479 [4] F.
Online since: September 2007
Authors: Zeng Liang Gao, Nian Jin Chen, Yue Bao Le, Wei Zhang
Fig. 4 shows the relationship between ∆t and k based on Table.1.
Table 1 Stress relaxation rate t∆ [min] 0σ [MPa] 1σ[MPa] 01 /σσ=k 0 0σ 0σ 1 1t∆ / 11σ 11σ / 0σ 2t∆ / 12σ 12σ / 0σ 3t∆ / 13σ 13σ / 0σ 4t∆ / 14σ 14σ / 0σ 0 t t t t t 4 3 2 1 1 0k= / Fig. 4.
The strain rate is 1 %05.0 − S for all tests.
References [1] S.Z.
Coffin: Predictive parameters and their application to high temperature low cycle fatigue in Fracture (1969). p. 643 Table 8 Comparison between the computational solution and the experimental value T[K] aε [%] t∆ [min] computational solution experimental value 1 530 522 5 479 491 10 427 435 873 0.7 30 389 398 1 1089 1114 823 0.6 5 855 923
Online since: September 2019
Authors: Elena Nesterenko, Anton Volgushev, Katharina Frese
Theoretical calculations of angles are given in table 1.
Table 1 – Theoretical angles of the spring 1008 AISI 304 619A γ 30 α 1°17' 1°26' 1°54' δ 28°43' 28°34' 28°06' Having stamped the part in the die with an elastic element, the following values of angles δ' in table 2 are obtained.
References [1] Rudman L.I.
Metal Science and Heat Treatment, 58(1), 46-50. doi:10.1007/s11041-016-9963-1 [19] Velichko, O.
Metal Science and Heat Treatment, 58(7-8), 479-482. doi:10.1007/s11041-016-0039-z [24] Kolbasnikov, N.
Online since: December 2011
Authors: Shao Min Song, Lin Wang, Wen Zhong Bao
O42.5, and the related performance indicators of the cement are in Table 1.
Table 6 Pebble aggregate concrete mix (kg/m3) List B W/B Sp C F Slag S Pebble W A Compressive Strength at 28 days(MPa) Strength grade 1-1 340 0.59 50% 140 100 100 888 888 200 0.5% 19.2 C15 1-2 340 0.56 50% 170 120 50 888 888 190 1.0% 20.8 C15 1-3 370 0.50 50% 210 100 60 888 888 185 1.0% 26.8 C20 1-4 391 0.46 48% 234 94 63 840 937 178 1.7% 33.9 C25 1-5 421 0.39 48% 253 101 67 840 937 166 1.8% 37.2 C30 1-6 461 0.36 46% 251 105 105 840 974 165 1.8% 44.1 C35 1-7 479 0.34 46% 261 109 109 805 974 165 2.0% 45.3 C35 1-8 480 0.34 46% 288 77 115 859 974 165 2.2% 45.3 C35 1-9 500 0.31 44% 300 80 120 770 1010 155 1.4% 53.2 C45 1-10 550 0.27 44% 370 90 90 794 1010 148 1.7% 63.1 C50 Table 7 Broken pebble aggregate concrete mix(kg/m3) List B W/B Sp C F Slag S Broken Pebble W A Compressive Strength at 28 days(MPa) Strength grade 2-1 370 0.54 50% 170 100 100 888 888 200 1.0% 28.5 C20 2-2 370 0.51 50% 200 50 120 888 888 190 1.3% 29.3 C20 2-3 390 0.47 50% 230 60 100 888 888 185 1.5% 36.2 C25 2-4
Fig.1 Relationship between strength grade and binding materials amount Fig.1 show that, to design the same level concrete, the binding materials amount of the pepple concrete is higher than that of broken pebble stone, and much higher than limestone tailings broken stone which through the high-quality processing.
Conclusion (1) Towards the pebble aggregate in Xinjiang area, with the water to cement ratio between 0.27 and 0.59, we can design C10 to C50 concrete with good workability
References [1]Jiguang Chen, Sixi Xiao, Wende Zeng, Jun Luo, Gangling Li, The study on the tensile strength of the gravel and pebbles concrete by two ways[J].Concrete 2007 8:P61-64; [2]Chucai Liu.
Online since: March 2007
Authors: Zhi Gao Huang, Heng Lai, Feng Ming Zhang, You Wei Du, Jian Min Zhang, Jia Xin Li
Results and discussion Fig.1 shows the typical hysteresis loop area as a function of temperature for the multilayers with LN=1, 3, 5, 7 and 3D bulk, with τ=19200, H0=4.8, K=1.0, respectively.
The linear variation of Ln(A-A0) versus Ln(1/T ) yields the different scaling exponents γ for the multilayers with LN=1, 3, 5, 7 and 3D bulk.
Especially, for LN≤ 5, the values of α, β and γ change evidently with increasing magnitude of LN, which means 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 2 4 6 8 10 12 14 16 18 A T LN=1 LN=3 LN=5 LN=7 PB Fig.1 The typical loop area A as a function of temperature for the multilayers with LN=1, 3, 5, 7 and 3D bulk, with τ=19200, H0=4.8
References [1] B.K.Chakrabarti and M.Acharyya: Rev.Mod.Phys., Vol.71(1998), P.847
[13] Heng Lai, Zhigao Huang et al.: Materials Science Forum Vols. 475-479 (2005), p. 2263 [14] K.
Online since: June 2010
Authors: Colleen J. Bettles, Nho Kwang Park, Barry C. Muddle, Ju Beom Lim
%O and 1.51wt.
References [1] H.
Looney: Key Engineering Matrials Vols. 127-131 (1997) pp 479-486
Hlavacek: Combustion Science and Technology, Vol. 99(1) (1994), pp 161 - 177
Hlavacek: Combustion Science and Technology, Vol. 99(1) (1994), pp 143 - 160.
Showing 1281 to 1290 of 3012 items