Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: September 2013
Authors: O.U. Orie, E.O. Eze
It has the lowest average by weight value of all mineral commodities [1].
Table 1 showed the results of the physical and mechanical properties of the rocks.
References [1] V.
Part 1.
Vol.33 No 5 (1996) 479-483
Table 1 showed the results of the physical and mechanical properties of the rocks.
References [1] V.
Part 1.
Vol.33 No 5 (1996) 479-483
Online since: June 2014
Authors: Nasir Shafiq, Usman Aminu Umar, Syed Ahmad Farhan, Khairun Azizi Azizli, Syed Shujaa Safdar Gardezi
Introduction
Embodied carbon can be defined as the “CO2 emissions produced during the extraction of resources, transportation, manufacture, assembly, disassembly and end-of-life disposal of a product” [1].
Table 1 presents the existing tools adopted in previous research to estimate embodied carbon.
Table 1.
Powell, “An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework,” Energy Build., vol. 43, no. 1, pp. 179–188, 2011
Firth, “Embodied and operational energy for new-build housing: A case study of construction methods in the UK,” Energy Build., vol. 67, pp. 479–488, 2013
Table 1 presents the existing tools adopted in previous research to estimate embodied carbon.
Table 1.
Powell, “An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework,” Energy Build., vol. 43, no. 1, pp. 179–188, 2011
Firth, “Embodied and operational energy for new-build housing: A case study of construction methods in the UK,” Energy Build., vol. 67, pp. 479–488, 2013
Online since: January 2014
Authors: Cheng Yang, Jian Bo Liu, Shuang Zhi, Ya Na Zhang
Figure 1.
Hannigan [1] combined Canny operator and contrast masking together.
References [1] Hannigan B T, Reed A M, Bradley B A.
Signal Processing, 2008, 88(1): 174-188
IEEE, 2007, 2: 479-483
Hannigan [1] combined Canny operator and contrast masking together.
References [1] Hannigan B T, Reed A M, Bradley B A.
Signal Processing, 2008, 88(1): 174-188
IEEE, 2007, 2: 479-483
Online since: April 2013
Authors: Oleg I. V'yunov, Anatolii G. Belous, S.D. Kobylianska, O. Bohnke
D.1,a, V’yunov O.
I.1,b, Belous A.G.1,c and Bohnke O.2,d 1V.I.
Fig. 1.
Mirnyi, Lithium Ion Conductivity and Crystal-Chemical Aspects of La2/3–xLi3x□4/3–2xNb2O6 Defect Perovskite Solid Solutions, Elektrokhimiya 38 (2002) 479-484.
Table 1.
I.1,b, Belous A.G.1,c and Bohnke O.2,d 1V.I.
Fig. 1.
Mirnyi, Lithium Ion Conductivity and Crystal-Chemical Aspects of La2/3–xLi3x□4/3–2xNb2O6 Defect Perovskite Solid Solutions, Elektrokhimiya 38 (2002) 479-484.
Table 1.
Online since: July 2020
Authors: Wisnu Ari Adi, Yunasfi Yunasfi, Engkir Sukirman, A. Insani
The Rietveld refinement procedure is carried out with the assumption that the A-site is occupied by Fe(1), Ni(1) and Ce(1) and the B-site is occupied by Fe(2), Ni(2), and Ce(2).
Table 1.
x Atoms Site gj xj yj zj 0.005 Fe(1) 8a 0.021(1) 0.125 0.125 0.125 Ni(1) 8a 0.010(1) 0.125 0.125 0.125 Ce(1) 8a 0.00021 0.125 0.125 0.125 Fe(2) 16d 0.071(4) 0.5 0.5 0.5 Ni(2) 16d 0.010(4) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.117(6) 0.2565(3) 0.2565(3) 0.2565(3) 0.010 Fe(1) 8a 0.023(1) 0.125 0.125 0.125 Ni(1) 8a 0.009(1) 0.125 0.125 0.125 Ce(1) 8a 0.00042 0.125 0.125 0.125 Fe(2) 16d 0.070(4) 0.5 0.5 0.5 Ni(2) 16d 0.009(3) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.133(5) 0.2570(2) 0.2570(2) 0.2570(2) 0.015 Fe(1) 8a 0.020(1) 0.125 0.125 0.125 Ni(1) 8a 0.010(1) 0.125 0.125 0.125 Ce(1) 8a 0.00062 0.125 0.125 0.125 Fe(2) 16d 0.068(4) 0.5 0.5 0.5 Ni(2) 16d 0.009(3) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.133(5) 0.2571(3) 0.2571(3) 0.2571(3) 0.020 Fe(1) 8a 0.023(1) 0.125 0.125 0.125 Ni(1) 8a 0.009(1) 0.125 0.125 0.125 Ce(1) 8a 0.00083 0.125 0.125 0.125 Fe(2) 16d 0.065(3) 0.5 0.5 0.5 Ni(2) 16d 0.009(3) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.135(5) 0.2571(2) 0.2571(2) 0.2571
Sample Structural formula Lattice parameters a [Å] NCFO(1) [Ni0.240 Ce0.005 Fe0.551]A [Ni0.122 Fe0.857]B O2.818 8.3291(1) NCFO(2) [Ni0.240 Ce0.010 Fe0.552]A [Ni0.115 Fe0.860]B O3.209 8.3284(1) NCFO(3) [Ni0.240 Ce0.015 Fe0.479]A [Ni0.114 Fe0.820]B O3.207 8.3296(1) NCFO(4) [Ni0.240 Ce0.020 Fe0.551]A [Ni0.116 Fe0.782]B O3.263 8.3282(1) Figure 1.
Lett. 2(1) (2016) 03-11
Table 1.
x Atoms Site gj xj yj zj 0.005 Fe(1) 8a 0.021(1) 0.125 0.125 0.125 Ni(1) 8a 0.010(1) 0.125 0.125 0.125 Ce(1) 8a 0.00021 0.125 0.125 0.125 Fe(2) 16d 0.071(4) 0.5 0.5 0.5 Ni(2) 16d 0.010(4) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.117(6) 0.2565(3) 0.2565(3) 0.2565(3) 0.010 Fe(1) 8a 0.023(1) 0.125 0.125 0.125 Ni(1) 8a 0.009(1) 0.125 0.125 0.125 Ce(1) 8a 0.00042 0.125 0.125 0.125 Fe(2) 16d 0.070(4) 0.5 0.5 0.5 Ni(2) 16d 0.009(3) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.133(5) 0.2570(2) 0.2570(2) 0.2570(2) 0.015 Fe(1) 8a 0.020(1) 0.125 0.125 0.125 Ni(1) 8a 0.010(1) 0.125 0.125 0.125 Ce(1) 8a 0.00062 0.125 0.125 0.125 Fe(2) 16d 0.068(4) 0.5 0.5 0.5 Ni(2) 16d 0.009(3) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.133(5) 0.2571(3) 0.2571(3) 0.2571(3) 0.020 Fe(1) 8a 0.023(1) 0.125 0.125 0.125 Ni(1) 8a 0.009(1) 0.125 0.125 0.125 Ce(1) 8a 0.00083 0.125 0.125 0.125 Fe(2) 16d 0.065(3) 0.5 0.5 0.5 Ni(2) 16d 0.009(3) 0.5 0.5 0.5 Ce(2) 16d 0.0 0.5 0.5 0.5 O 32e 0.135(5) 0.2571(2) 0.2571(2) 0.2571
Sample Structural formula Lattice parameters a [Å] NCFO(1) [Ni0.240 Ce0.005 Fe0.551]A [Ni0.122 Fe0.857]B O2.818 8.3291(1) NCFO(2) [Ni0.240 Ce0.010 Fe0.552]A [Ni0.115 Fe0.860]B O3.209 8.3284(1) NCFO(3) [Ni0.240 Ce0.015 Fe0.479]A [Ni0.114 Fe0.820]B O3.207 8.3296(1) NCFO(4) [Ni0.240 Ce0.020 Fe0.551]A [Ni0.116 Fe0.782]B O3.263 8.3282(1) Figure 1.
Lett. 2(1) (2016) 03-11
Online since: June 2010
Authors: A.S. Bhatti, A. Hussain, P. Akhter
High purity Au-Sb (1% Sb) powder was evaporated on back side of the wafer
to obtain an ohmic contact.
The semi log plots of the I-V-T data of the device, in device temperature range of 283K to 343K, under forward and reverse bias conditions, are shown in Fig.1. 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 -2.5 -1.5 -0.5 0.5 1.5 2.5 Voltage (V) Current (Amp) 283K 303K 323K 343K 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 0 0.5 1 1.5 2 2.5 Applied voltage (V) Current (Amp) Experimental I-V Curve Reproduced I-V Curve Fig. 1.
The equation indicates that the plot of Ln (σ) vs. 1/T should be a straight line with a slope of -Ea/R.
Shift in slopes of Fig. 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 1000/T (/K) B ( V -1/2 ) Shift in slopes of Fig. 8 Fig. 9.
Tautz , Progress in Surface Science, Vol. 82( 2007) 479
The semi log plots of the I-V-T data of the device, in device temperature range of 283K to 343K, under forward and reverse bias conditions, are shown in Fig.1. 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 -2.5 -1.5 -0.5 0.5 1.5 2.5 Voltage (V) Current (Amp) 283K 303K 323K 343K 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 0 0.5 1 1.5 2 2.5 Applied voltage (V) Current (Amp) Experimental I-V Curve Reproduced I-V Curve Fig. 1.
The equation indicates that the plot of Ln (σ) vs. 1/T should be a straight line with a slope of -Ea/R.
Shift in slopes of Fig. 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 1000/T (/K) B ( V -1/2 ) Shift in slopes of Fig. 8 Fig. 9.
Tautz , Progress in Surface Science, Vol. 82( 2007) 479
Online since: October 2009
Authors: Ying Chen, Munekazu Ohno, Tetsuo Mohri
Figures 1(b) and (c) are the atomic
configurations on (100) plane at points marked by the upper and lower crosses, respectively, in the
microstructure of Fig. 1(a).
(9) Each term is given in the following logarithmic expressions, ( ) ( ) ( ) ( ) ( ) ( ) ) (1ln) (lnln , , 2 1 , , 2 1 1 1 ∑∑ ∑∑ = = ≠ ≠ − +⋅∆⋅−++⋅∆⋅= ljjl lj kiik ki ljjl lj kiik ki XXt XXt P� β α β α θ θ , (10) ( )∑∑ −−=∆−= − − ij kl klijijklij YYe E�P� αβ αβ ωβ β ,, * 2 1 *1 2 1 2 1 ln , (11) and ( ) ( ) ( ) 1 2 12 ln , , , 3 1 −+ − + − = ∑ ∑∑ − ω ω ω αβ β α ijkl klij jl lj ik ki YL XLXL P�
The coefficient cij is written as, ( ) ∑= − =⋅⋅= 2,1 1 0 k k jk ijij tFFc δφ
References [1] L.Q.
Forum Vol. 457-479 (2005), p.3075
(9) Each term is given in the following logarithmic expressions, ( ) ( ) ( ) ( ) ( ) ( ) ) (1ln) (lnln , , 2 1 , , 2 1 1 1 ∑∑ ∑∑ = = ≠ ≠ − +⋅∆⋅−++⋅∆⋅= ljjl lj kiik ki ljjl lj kiik ki XXt XXt P� β α β α θ θ , (10) ( )∑∑ −−=∆−= − − ij kl klijijklij YYe E�P� αβ αβ ωβ β ,, * 2 1 *1 2 1 2 1 ln , (11) and ( ) ( ) ( ) 1 2 12 ln , , , 3 1 −+ − + − = ∑ ∑∑ − ω ω ω αβ β α ijkl klij jl lj ik ki YL XLXL P�
The coefficient cij is written as, ( ) ∑= − =⋅⋅= 2,1 1 0 k k jk ijij tFFc δφ
References [1] L.Q.
Forum Vol. 457-479 (2005), p.3075
Online since: July 2011
Authors: Joaquin López
Therefore, in this work, all the test cases have been resolved using a unit domain (1 x 1 x 1) divided into n3 cells with the same size h = 1/n in each coordinate direction.
For example, øip=r2 -(xip2+yip2+zip2) for the interface surface of Eq. (1).
Fig. 1.
References [1] J.
Zanzi, in: Euromech Colloquium 479 – Numerical Simulation of Multiphase Flow with Deformable Interfaces, Scheveningen, Netherlands, (2006)
For example, øip=r2 -(xip2+yip2+zip2) for the interface surface of Eq. (1).
Fig. 1.
References [1] J.
Zanzi, in: Euromech Colloquium 479 – Numerical Simulation of Multiphase Flow with Deformable Interfaces, Scheveningen, Netherlands, (2006)
Online since: February 2014
Authors: Andi Rustandi, Johny Wahyuadi Soedarsono, Vita Astini, Fahmi Fazri, Rianti Dewi Sulamet-Ariobimo, Seto Tjahyono, Adji Kawigraha
Variations are made to the ratio of weight between laterite and coal, they are: 1:3, 1:4, and 1:5.
Fig. 1.
Fe content in weight ratio of 1:3 is higher than 1:4.
Weight ratio of 1:4 has higher gasification rate compared to 1:3 due to higher surface area of carbon.
Morita: Ironmaking and Steelmaking Vol. 31 (2004), pp. 479
Fig. 1.
Fe content in weight ratio of 1:3 is higher than 1:4.
Weight ratio of 1:4 has higher gasification rate compared to 1:3 due to higher surface area of carbon.
Morita: Ironmaking and Steelmaking Vol. 31 (2004), pp. 479
Online since: July 2017
Authors: Syardah U. Adawiyah, Endang Tri Wahyuni, Adhitasari Suratman
Zeolite demineralized with a solution of 50 mL of 1 M Na2EDTA for 1 day.
Table 1.
The composition of alginate and zeolite Alginate (g) Distilled water (mL) Zeolite (g) Distilled water (mL) Alginate: zeolite Ratio 1 20 0,1 20 10:1 1 20 0,2 20 10:2 1 20 0,3 20 10:3 1 20 0,4 20 10:4 1 20 0,5 20 10:5 1 20 0,6 20 10:6 Permeability and Selectivity The single gas permeability of CO2 and CH4 were measured through all membranes by constant volume and variable pressure technique.
The bands at 1033 cm−1 were attributed to the C–O stretching and the bands at 1620 cm-1 showed carbonyl (C=O).
[3] Mulder, M., 1996, Basic Principles of Membrane Technology, Kluwer Academic Publishers, London, 51 – 59, 307 – 319, 465–479
Table 1.
The composition of alginate and zeolite Alginate (g) Distilled water (mL) Zeolite (g) Distilled water (mL) Alginate: zeolite Ratio 1 20 0,1 20 10:1 1 20 0,2 20 10:2 1 20 0,3 20 10:3 1 20 0,4 20 10:4 1 20 0,5 20 10:5 1 20 0,6 20 10:6 Permeability and Selectivity The single gas permeability of CO2 and CH4 were measured through all membranes by constant volume and variable pressure technique.
The bands at 1033 cm−1 were attributed to the C–O stretching and the bands at 1620 cm-1 showed carbonyl (C=O).
[3] Mulder, M., 1996, Basic Principles of Membrane Technology, Kluwer Academic Publishers, London, 51 – 59, 307 – 319, 465–479