Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: June 2021
Authors: Ming Xie, Sai Bei Wang, Yong Tai Chen, Ji Heng Fang, Shang Qiang Zhao
Fig. 1 Schematic view of Ag-Zn alloy internal oxidation process
Internal oxidation.
Schematic view of Ag-Zn alloy internal oxidation process is shown in Fig. 1.
(1) Application of nanotechnology.
References [1] C.P.
Yang, et al, Effect of preparing method of ZnO powders on electrical arc erosion behavior of Ag/ZnO electrical contact material, Journal of Materials Research. 31 (2016) 468-479
Schematic view of Ag-Zn alloy internal oxidation process is shown in Fig. 1.
(1) Application of nanotechnology.
References [1] C.P.
Yang, et al, Effect of preparing method of ZnO powders on electrical arc erosion behavior of Ag/ZnO electrical contact material, Journal of Materials Research. 31 (2016) 468-479
Online since: June 2021
Authors: Ya Ping Bai, Jian Ping Li, Dong Dong Jiao, Jin Zhou, Ke Ke Tian, Zhong Yang
Jiang[23] studied the effect of austenite grain size on the martensite transformation in 1.0C-1.5Cr-0.3Mn0.3Si-Fe high carbon steel.
The atomic ratio of Si and C in the SiC particles in the SiC/Fe-3Cu-C and SiC/Fe-3Cu-0.5Mo-C materials was 3:1 and 2:1, respectively.
The enhanced relationship was expressed as Eq. 8[52]: σc0=σm0(1+fd)(1+f1)
References [1] E.
Mater. 479(2019)43-49
The atomic ratio of Si and C in the SiC particles in the SiC/Fe-3Cu-C and SiC/Fe-3Cu-0.5Mo-C materials was 3:1 and 2:1, respectively.
The enhanced relationship was expressed as Eq. 8[52]: σc0=σm0(1+fd)(1+f1)
References [1] E.
Mater. 479(2019)43-49
Online since: September 2013
Authors: Yousef El Sayed Said
The parameter l0 was determined experimentally from the plot of 1/(n2-1) versus 1/l2.
References [1] E.
Solids 279 (2001) 1
Phys. 70 (1991) 1
Solids 330 (2003) 1
References [1] E.
Solids 279 (2001) 1
Phys. 70 (1991) 1
Solids 330 (2003) 1
Online since: May 2007
Authors: Jennifer Jackman, Nai Yi Li, Joseph A. Carpenter, Philip S. Sklad, Richard J. Osborne, Bob R. Powell
Carpenter, Jr.1, Jennifer Jackman2, Naiyi Li3, Richard J.
April 2004 Figure 1.
Cradle Bottom View Table 1.
References [1] J.R., D.J.
Verma, Fifth Pacific Rim International Materials Conference PRIM5, Beijing, China, Nov 2004, Materials Science Forum, 475-479 (2005) pp. 559-562
April 2004 Figure 1.
Cradle Bottom View Table 1.
References [1] J.R., D.J.
Verma, Fifth Pacific Rim International Materials Conference PRIM5, Beijing, China, Nov 2004, Materials Science Forum, 475-479 (2005) pp. 559-562
Online since: May 2024
Authors: Susanne Hemes, Sergej Gein, Niloofar Navaeilavasani, Ulrike Hecht
Table 1.
σ (N) = σmax + (UTSB – σmax) · (1 – (NA – 1) / (NA + B))C [53]
Goodman approximation: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / UTSB)) [61], (2) Elliptical relationship: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / UTSB)²)0.5 [62], (3) Gerber parabola: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / UTSB)²) [63] and (4) Bagci formula: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / YSB, 0.2%)4) [60]
References [1] J.W.
Rep. 8 (2018) 1–9. https://doi.org/10.1038/s41598-018-19449-0
σ (N) = σmax + (UTSB – σmax) · (1 – (NA – 1) / (NA + B))C [53]
Goodman approximation: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / UTSB)) [61], (2) Elliptical relationship: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / UTSB)²)0.5 [62], (3) Gerber parabola: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / UTSB)²) [63] and (4) Bagci formula: σa, R-1 = (σa, R0.1 * kf) / (1 – ((σm, R0.1 * kf) / YSB, 0.2%)4) [60]
References [1] J.W.
Rep. 8 (2018) 1–9. https://doi.org/10.1038/s41598-018-19449-0
Online since: January 2016
Authors: Rastislav Menďan, Boris Vavrovič
rendering
20
0,9900
5
Foamed PU
5
0,0500
6
Window frame
90
0,1220
7
Glass
4
1,0000
8
Gas stratum between glass panels
16
0,0206
Number of window position
Distance of window from inner edge of the wall
[mm]
Heat conductivity derived from 2D calculation L2D [W/(m.K)]
Linear loss coefficient
y [W/(m.K)]
1
0
1,0678
0,066
2
10
1,0615
0,059
3
20
1,0565
0,054
4
30
1,0525
0,051
5
40
1,0491
0,047
6
50
1,0462
0,044
7
60
1,0438
0,042
8
70
1,0417
0,040
9
80
1,0399
0,038
10
90
1,0384
0,036
11
100
1,0372
0,035
12
110
1,0362
0,034
13
120
1,0353
0,033
14
130
1,0347
0,033
15
140
1,0343
0,032
16
150
1,0341
0,032
17
160
1,0341
0,032
18
170
1,0342
0,032
19
180
1,0345
0,032
20
190
1,0350
0,033
21
200
1,0357
0,034
22
210
1,0366
0,035
23
220
1,0378
0,036
24
230
1,0391
0,037
25
240
1,0408
0,039
26
250
1,0427
0,041
27
260
1,0451
0,043
28
270
1,0479
0,046
29
280
1,0511
0,049
30
290
1,0551
0,053
31
300
1,0638
0,062
32
315
1,0696
0,068
Table 3. – Relation of y to the possition of window in wall with heat
TI reveals 70 mm L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) 1 0 1,2912 0,189 1,2540 0,152 1,2196 0,118 1,2091 0,107 1,1939 0,092 1,1820 0,080 2 10 1,2761 0,174 1,2401 0,138 1,2156 0,114 1,1964 0,094 1,1817 0,080 1,1703 0,068 3 20 1,2673 0,165 1,2327 0,131 1,2091 0,107 1,1906 0,089 1,1728 0,071 1,1653 0,063 4 30 1,2603 0,158 1,2270 0,125 1,2043 0,102 1,1864 0,084 1,1673 0,065 1,1621 0,060 5 40 1,2551 0,153 1,2230 0,121 1,2011 0,099 1,1839 0,082 1,1640 0,062 1,1604 0,058 6 50 1,2487 0,147 1,2178 0,116 1,1967 0,095 1,1800 0,078 1,1613 0,059 1,1574 0,055 7 60 1,2421 0,140 1,2127 0,111 1,1924 0,090 1,1763 0,074 1,1580 0,056 1,1544 0,052 8 70 1,2365 0,134 1,2081 0,106 1,1885 0,086 1,1732 0,071 1,1575 0,056 1,1520 0,050 9 80 1,2306 0,129 1,2033 0,101 1,1844 0,082 1,1694 0,067 1,1580 0,056 1,1491 0,047 10 90 1,2249 0,123 1,2009 0,099 1,1806 0,079 1,1686 0,067 1,1575 0,056 1,1489
0,047 11 100 1,2195 0,117 1,1965 0,094 1,1791 0,077 1,1654 0,063 1,1547 0,053 1,1464 0,044 12 110 1,2141 0,112 1,1924 0,090 1,1732 0,071 1,1626 0,061 1,1524 0,050 1,1444 0,042 13 120 1,2089 0,107 1,1880 0,086 1,1696 0,068 1,1593 0,057 1,1495 0,048 1,1419 0,040 14 130 1,2037 0,102 1,1837 0,082 1,1662 0,064 1,1563 0,054 1,1469 0,045 1,1395 0,038 15 140 1,1986 0,097 1,1802 0,078 1,1628 0,061 1,1540 0,052 1,1450 0,043 1,1379 0,036 16 150 1,1937 0,092 1,1758 0,074 1,1597 0,058 1,1508 0,049 1,1422 0,040 1,1355 0,034 17 160 1,1885 0,086 1,1717 0,070 1,1559 0,054 1,1479 0,046 1,1397 0,038 1,1334 0,031 18 170 1,1833 0,081 1,1677 0,066 1,1529 0,051 1,1453 0,043 1,1375 0,036 1,1315 0,029 19 180 1,1781 0,076 1,1641 0,062 1,1497 0,048 1,1430 0,041 1,1357 0,034 1,1300 0,028 20 190 1,1729 0,071 1,1597 0,058 1,1465 0,045 1,1400 0,038 1,1331 0,031 1,1277 0,026 21 200 1,1675 0,065 1,1586 0,057 1,1485 0,046 1,1402 0,038 1,1337 0,032 1,1286 0,027 22 210 1,1619 0,060 1,1497 0,048 1,1404 0,038 1,1326 0,031
1,1266 0,025 1,1220 0,020 23 220 1,1563 0,054 1,1456 0,044 1,1374 0,035 1,1302 0,028 1,1247 0,023 1,1205 0,018 24 230 1,1508 0,049 1,1418 0,040 1,1345 0,033 1,1284 0,026 1,1234 0,021 1,1194 0,017 25 240 1,1445 0,043 1,1373 0,035 1,1312 0,029 1,1256 0,024 1,1212 0,019 1,1177 0,016 26 250 1,1384 0,036 1,1326 0,031 1,1275 0,026 1,1227 0,021 1,1189 0,017 1,1159 0,014 27 260 1,1336 0,032 1,1289 0,027 1,1247 0,023 1,1206 0,019 1,1174 0,015 1,1147 0,013 28 270 1,1291 0,027 1,1253 0,023 1,1219 0,020 1,1185 0,016 1,1158 0,014 1,1136 0,012 29 280 1,1257 0,024 1,1225 0,021 1,1198 0,018 1,1172 0,015 1,1150 0,013 1,1132 0,011 30 290 1,1235 0,021 1,1211 0,019 1,1190 0,017 1,1169 0,015 1,1153 0,013 1,1139 0,012 31 300 1,1232 0,021 1,1215 0,019 1,1202 0,018 1,1190 0,017 1,1181 0,016 1,1173 0,015 32 315 1,1220 0,020 1,1220 0,020 1,1220 0,020 1,1220 0,020 1,1220 0,020 1,1220 0,020 Table 4. – Relation of y to the window possition in wall with heat cladding U = 0,31 W/(m2.K), Uw= 1,2 W/(m2.K) Comsidered
0,067 11 100 1,2463 0,161 1,2126 0,128 1,1886 0,104 1,1713 0,086 1,1580 0,073 1,1478 0,063 12 110 1,2359 0,151 1,2047 0,120 1,1800 0,095 1,1659 0,081 1,1532 0,068 1,1437 0,059 13 120 1,2254 0,140 1,1969 0,112 1,1735 0,089 1,1606 0,076 1,1487 0,064 1,1397 0,055 14 130 1,2147 0,130 1,1884 0,103 1,1666 0,082 1,1547 0,070 1,1436 0,059 1,1352 0,050 15 140 1,2041 0,119 1,1797 0,095 1,1602 0,075 1,1490 0,064 1,1387 0,054 1,1308 0,046 16 150 1,1928 0,108 1,1720 0,087 1,1535 0,069 1,1434 0,058 1,1346 0,050 1,1272 0,042 17 160 1,1817 0,097 1,1639 0,079 1,1468 0,062 1,1387 0,054 1,1300 0,045 1,1233 0,038 18 170 1,1705 0,085 1,1554 0,070 1,1410 0,056 1,1330 0,048 1,1252 0,040 1,1190 0,034 19 180 1,1589 0,074 1,1471 0,062 1,1345 0,049 1,1277 0,043 1,1206 0,036 1,1150 0,030 20 190 1,1474 0,062 1,1385 0,053 1,1277 0,043 1,1220 0,037 1,1157 0,031 1,1108 0,026 21 200 1,1366 0,052 1,1299 0,045 1,1225 0,038 1,1160 0,031 1,1106 0,026 1,1061 0,021 22 210 1,1275 0,042 1,1206 0,036 1,1143 0,029 1,1086 0,024
TI reveals 70 mm L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) L2D W/(m.K) y W/(m.K) 1 0 1,2912 0,189 1,2540 0,152 1,2196 0,118 1,2091 0,107 1,1939 0,092 1,1820 0,080 2 10 1,2761 0,174 1,2401 0,138 1,2156 0,114 1,1964 0,094 1,1817 0,080 1,1703 0,068 3 20 1,2673 0,165 1,2327 0,131 1,2091 0,107 1,1906 0,089 1,1728 0,071 1,1653 0,063 4 30 1,2603 0,158 1,2270 0,125 1,2043 0,102 1,1864 0,084 1,1673 0,065 1,1621 0,060 5 40 1,2551 0,153 1,2230 0,121 1,2011 0,099 1,1839 0,082 1,1640 0,062 1,1604 0,058 6 50 1,2487 0,147 1,2178 0,116 1,1967 0,095 1,1800 0,078 1,1613 0,059 1,1574 0,055 7 60 1,2421 0,140 1,2127 0,111 1,1924 0,090 1,1763 0,074 1,1580 0,056 1,1544 0,052 8 70 1,2365 0,134 1,2081 0,106 1,1885 0,086 1,1732 0,071 1,1575 0,056 1,1520 0,050 9 80 1,2306 0,129 1,2033 0,101 1,1844 0,082 1,1694 0,067 1,1580 0,056 1,1491 0,047 10 90 1,2249 0,123 1,2009 0,099 1,1806 0,079 1,1686 0,067 1,1575 0,056 1,1489
0,047 11 100 1,2195 0,117 1,1965 0,094 1,1791 0,077 1,1654 0,063 1,1547 0,053 1,1464 0,044 12 110 1,2141 0,112 1,1924 0,090 1,1732 0,071 1,1626 0,061 1,1524 0,050 1,1444 0,042 13 120 1,2089 0,107 1,1880 0,086 1,1696 0,068 1,1593 0,057 1,1495 0,048 1,1419 0,040 14 130 1,2037 0,102 1,1837 0,082 1,1662 0,064 1,1563 0,054 1,1469 0,045 1,1395 0,038 15 140 1,1986 0,097 1,1802 0,078 1,1628 0,061 1,1540 0,052 1,1450 0,043 1,1379 0,036 16 150 1,1937 0,092 1,1758 0,074 1,1597 0,058 1,1508 0,049 1,1422 0,040 1,1355 0,034 17 160 1,1885 0,086 1,1717 0,070 1,1559 0,054 1,1479 0,046 1,1397 0,038 1,1334 0,031 18 170 1,1833 0,081 1,1677 0,066 1,1529 0,051 1,1453 0,043 1,1375 0,036 1,1315 0,029 19 180 1,1781 0,076 1,1641 0,062 1,1497 0,048 1,1430 0,041 1,1357 0,034 1,1300 0,028 20 190 1,1729 0,071 1,1597 0,058 1,1465 0,045 1,1400 0,038 1,1331 0,031 1,1277 0,026 21 200 1,1675 0,065 1,1586 0,057 1,1485 0,046 1,1402 0,038 1,1337 0,032 1,1286 0,027 22 210 1,1619 0,060 1,1497 0,048 1,1404 0,038 1,1326 0,031
1,1266 0,025 1,1220 0,020 23 220 1,1563 0,054 1,1456 0,044 1,1374 0,035 1,1302 0,028 1,1247 0,023 1,1205 0,018 24 230 1,1508 0,049 1,1418 0,040 1,1345 0,033 1,1284 0,026 1,1234 0,021 1,1194 0,017 25 240 1,1445 0,043 1,1373 0,035 1,1312 0,029 1,1256 0,024 1,1212 0,019 1,1177 0,016 26 250 1,1384 0,036 1,1326 0,031 1,1275 0,026 1,1227 0,021 1,1189 0,017 1,1159 0,014 27 260 1,1336 0,032 1,1289 0,027 1,1247 0,023 1,1206 0,019 1,1174 0,015 1,1147 0,013 28 270 1,1291 0,027 1,1253 0,023 1,1219 0,020 1,1185 0,016 1,1158 0,014 1,1136 0,012 29 280 1,1257 0,024 1,1225 0,021 1,1198 0,018 1,1172 0,015 1,1150 0,013 1,1132 0,011 30 290 1,1235 0,021 1,1211 0,019 1,1190 0,017 1,1169 0,015 1,1153 0,013 1,1139 0,012 31 300 1,1232 0,021 1,1215 0,019 1,1202 0,018 1,1190 0,017 1,1181 0,016 1,1173 0,015 32 315 1,1220 0,020 1,1220 0,020 1,1220 0,020 1,1220 0,020 1,1220 0,020 1,1220 0,020 Table 4. – Relation of y to the window possition in wall with heat cladding U = 0,31 W/(m2.K), Uw= 1,2 W/(m2.K) Comsidered
0,067 11 100 1,2463 0,161 1,2126 0,128 1,1886 0,104 1,1713 0,086 1,1580 0,073 1,1478 0,063 12 110 1,2359 0,151 1,2047 0,120 1,1800 0,095 1,1659 0,081 1,1532 0,068 1,1437 0,059 13 120 1,2254 0,140 1,1969 0,112 1,1735 0,089 1,1606 0,076 1,1487 0,064 1,1397 0,055 14 130 1,2147 0,130 1,1884 0,103 1,1666 0,082 1,1547 0,070 1,1436 0,059 1,1352 0,050 15 140 1,2041 0,119 1,1797 0,095 1,1602 0,075 1,1490 0,064 1,1387 0,054 1,1308 0,046 16 150 1,1928 0,108 1,1720 0,087 1,1535 0,069 1,1434 0,058 1,1346 0,050 1,1272 0,042 17 160 1,1817 0,097 1,1639 0,079 1,1468 0,062 1,1387 0,054 1,1300 0,045 1,1233 0,038 18 170 1,1705 0,085 1,1554 0,070 1,1410 0,056 1,1330 0,048 1,1252 0,040 1,1190 0,034 19 180 1,1589 0,074 1,1471 0,062 1,1345 0,049 1,1277 0,043 1,1206 0,036 1,1150 0,030 20 190 1,1474 0,062 1,1385 0,053 1,1277 0,043 1,1220 0,037 1,1157 0,031 1,1108 0,026 21 200 1,1366 0,052 1,1299 0,045 1,1225 0,038 1,1160 0,031 1,1106 0,026 1,1061 0,021 22 210 1,1275 0,042 1,1206 0,036 1,1143 0,029 1,1086 0,024
Online since: January 2009
Authors: P.M. Pasinetti, F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor
(a) wT=1, wL=0, and θ =1/3.
(a) wT=1, wL=0.5, and θ =1/3.
(b) wT=1, wL=1, and θ =1/2.
From Eqns. 22, 25, and 20, we obtain Tc(1/3): (1/3) (1/3) (1/9) (1/3) (1/3) [ln(1/3) (2/ 3)ln 2] T L c B u w w T s k ∞ ∞ + ≈ ≈ − +
Vol. 479 (2001), p. 43 [11] F.
(a) wT=1, wL=0.5, and θ =1/3.
(b) wT=1, wL=1, and θ =1/2.
From Eqns. 22, 25, and 20, we obtain Tc(1/3): (1/3) (1/3) (1/9) (1/3) (1/3) [ln(1/3) (2/ 3)ln 2] T L c B u w w T s k ∞ ∞ + ≈ ≈ − +
Vol. 479 (2001), p. 43 [11] F.
Online since: January 2015
Authors: K.A. Koparkar, N.S. Bajaj, S.K. Omanwar
Contents of Paper
1.
Table 1.
Ammonium nitrate Urea Molar Ratio Flame colour Duration of flame in Sec. 1. 12 4 1:0.33 Fent-Yellow 12 2. 12 8 1:0.66 Yellow 20 3. 12 10 1:0.83 Dark-Yellow 30 4. 12 12 1:1 Fent-Orange 35 5. 12 14.4 1:1.2 Orange 35 6. 12 18 1:1.5 Orange-Red 36 7. 12 24 1:2 Orange-Red 40 The rare earth doped Y2O3 by using different fuels synthesized via CS is useful for different application.
Alloys Compd. 479 (2009) 772–776
B. 72 (2005) 1-5
Table 1.
Ammonium nitrate Urea Molar Ratio Flame colour Duration of flame in Sec. 1. 12 4 1:0.33 Fent-Yellow 12 2. 12 8 1:0.66 Yellow 20 3. 12 10 1:0.83 Dark-Yellow 30 4. 12 12 1:1 Fent-Orange 35 5. 12 14.4 1:1.2 Orange 35 6. 12 18 1:1.5 Orange-Red 36 7. 12 24 1:2 Orange-Red 40 The rare earth doped Y2O3 by using different fuels synthesized via CS is useful for different application.
Alloys Compd. 479 (2009) 772–776
B. 72 (2005) 1-5
Online since: October 2008
Authors: Luis Maria Esquivias Fedriani, Nicolás de la Rosa-Fox, Victor Morales-Flórez, Manuel Piñero
Table 1.
The upward curvature 0,0 0,1 0,2 0,3 0,4 0 10 20 30 (MPa) (%) 1 2 3 1,76 1,77 1,78 1,79 1,80 1,81 1,82 1,83 1,84 1 2 3 1,93 1,94 log [Er(t) (MPa)] log [t(s)] indicates a continuous increase in its elastic modulus, which is characteristic of elastomers that loose their stiffness as the polymer chains deform.
Nanoparticle Res., 1, 1 (1999)
Rev. 1, 243 (1994)
Soc (London) A319, 479 (1970) [56] J.
The upward curvature 0,0 0,1 0,2 0,3 0,4 0 10 20 30 (MPa) (%) 1 2 3 1,76 1,77 1,78 1,79 1,80 1,81 1,82 1,83 1,84 1 2 3 1,93 1,94 log [Er(t) (MPa)] log [t(s)] indicates a continuous increase in its elastic modulus, which is characteristic of elastomers that loose their stiffness as the polymer chains deform.
Nanoparticle Res., 1, 1 (1999)
Rev. 1, 243 (1994)
Soc (London) A319, 479 (1970) [56] J.
Online since: November 2014
Authors: S.K. Tripathi, Ramneek Kaur, Mamta Rani
Table of Contents
1.
Properties of Oxide Nanomaterials 2.1.1.
Gas-Solid Transformation Methods 2.2.1.1.
Applications 2.3.1.
Growth 240(2002) 479-483
Properties of Oxide Nanomaterials 2.1.1.
Gas-Solid Transformation Methods 2.2.1.1.
Applications 2.3.1.
Growth 240(2002) 479-483