[1]
A. Mukhopadhyay, Aluminium alloy technologies for advanced defence systems, DRDO, India, (2018).
Google Scholar
[2]
M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, W. A. Curtin, P. J. Uggowitzer, S. Pogatscher, Design strategy for controlled natural aging in Al-Mg-Si alloys, Acta Materialia 118 (2016) 296-305.
DOI: 10.1016/j.actamat.2016.07.048
Google Scholar
[3]
C. J. Davidson, J. R. Griffiths, A. S. Machin, The effect of solution heat-treatment time on the fatigue properties of an Al-S-Mg casting alloy, Engineering Material Structure 25 (2002) 223-230.
DOI: 10.1046/j.8756-758x.2001.00490.x
Google Scholar
[4]
J. Banhart, C. S. T. Chang, Z. Liang, N. Wanderka, M. D. H. Lay, A. J. Hill, Natural ageing in Al-Mg-Si alloys- A process of unexpected complexity, Adv. Eng. Mater. 12 (2010) 559-571.
DOI: 10.1002/adem.201000041
Google Scholar
[5]
K. Mizuno, H. Okamoto, E. Hashimoto, T. Kino, Reduction of large vacancy clusters in nearly perfect aluminium single crystals, Tran. Mat. Res. Soc. Japan 41(2016) 243-246.
DOI: 10.14723/tmrsj.41.243
Google Scholar
[6]
E. A. Mortsell, C. D. Marioara, S. J. Andersen, J. Royset, O. Reiso, R. Holmestad, Effect of germanium, copper and Silver substitutions on hardness and microstructure in lean Al-Mg-Si alloys, Metall. Mater. Trans. A 46 (2015) 4369-4379.
DOI: 10.1007/s11661-015-3039-5
Google Scholar
[7]
S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Trehott, U. Tundal, O. Reiso, The crystal structure of the β˝ phase in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3283-3298.
DOI: 10.1016/s1359-6454(97)00493-x
Google Scholar
[8]
W. F. Miao and D. E. Laughlin, Precipitation hardening in aluminium alloy 6022, Scripta Materialia 40 (1999) 873-878.
DOI: 10.1016/s1359-6462(99)00046-9
Google Scholar
[9]
M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. J. Uggowitzer, S. Pogatscher, Effect of trace elements and prolonged natural aging (Sn), Materials & Design 107 (2016) 257-268.
DOI: 10.1016/j.matdes.2016.06.014
Google Scholar
[10]
M. Baruah, A. Ladha, M. Baruah, A. Kar, A. Deb, A. Borah, A study of effect of micro-alloying of tin on ageing behaviour of 6xxx Series aluminium alloys, in: B. B. Biswal et al. (Eds.), Advances in Mechanical Engineering, Springer Nature, Singapore, 2020, pp.397-405.
DOI: 10.1007/978-981-15-0124-1_35
Google Scholar
[11]
X. Zhang, M. Liu, H. Sun, J. Banhart, Influence of Sn on the age hardening behavior of Al-Mg-Si alloys at different temperatures, Materialia 8 (209) 100441/1-8.
DOI: 10.1016/j.mtla.2019.100441
Google Scholar
[12]
I. Stulikova, J. Faltus, B. Smola, Influence of composition on natural ageing of AlMgSi alloys, Kovove Mater. 45 (2007) 85-90.
Google Scholar
[13]
S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S. Gerst, M. F. Francis, W. A. Curtin, J. F. Loffler, P. J. Uggowitzer, Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys, Phys. Rev. Lett.112 (2014) 225701.
DOI: 10.1103/physrevlett.112.225701
Google Scholar
[14]
S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P. J. Uggowitzer, Mechanisms controlling artificial ageing of Al-Mg-Si alloys, Acta Mater. 59 (2011) 3352–3363.
DOI: 10.1016/j.actamat.2011.02.010
Google Scholar
[15]
W. Tu, J. Tang, Y. Zhang, L. Cao, L. Ma, Q. Zhu, L. Ye, S. Liu, Influence of Sn on the precipitation and hardening response of natural aged Al-0.4Mg-1.0Si alloy artificial aged at different temperatures, Materials Science & Engineering A. 765 (2019) 138250.
DOI: 10.1016/j.msea.2019.138250
Google Scholar
[16]
ASM Handbook: Heat Treating of Aluminium Alloy. ASM Handbook Committee, vol. 4,180 pp.841-879, (1991).
Google Scholar
[17]
M. Hosseinifar, D. V. Malakhov, The sequence of intermetallic formation during the solidification of an Al-Mg-Si alloy containing La, Metall. Mater. Trans. A, 42 (2011) 825-833, (2011).
DOI: 10.1007/s11661-010-0453-6
Google Scholar
[18]
Y. Birol, Formation and transformation of intermetallic particles in as trip-cast Al0.8Fe0.6Si alloy, Z Metall. kde. 89 (1998) 501-506.
Google Scholar
[19]
L. Ma, J. Tang, W. Tu, L. Ye, H. Jiang, X. Zhan, J. Zhao, Effect trace addition of Sn on the ageing behavior of Al-Mg-Si alloy with a different Mg/Si ratio, Materials 13 (2020) 913.
DOI: 10.3390/ma13040913
Google Scholar
[20]
C. D. Marioara, H. Nordmark, S. J. Andersen, R. Holmestad, Post-β˝phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys, Journal of Materials Science 41 (2006) 471-478.
DOI: 10.1007/s10853-005-2470-1
Google Scholar
[21]
Y. Birol, Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys, International Journal of Materials Research 101 (2010) 439-444.
DOI: 10.3139/146.110293
Google Scholar
[22]
G. E. Dieter, Mechanical Metallurgy, Si metric ed., McGraw-Hill, London,(1988).
Google Scholar
[23]
M. Werinos, H. Antrekowitsch, F. Werner, T. Ebner, P. J. Uggowitzer, S. Pogatscher, Influence of alloy production history on natural ageing of AA 6061 modified with Sn, in European Metallurgy Conference, 2015, pp.303-312. 2.
DOI: 10.1002/9781119093435.ch61
Google Scholar