Chemical Vapor Deposition (CVD) of ZrC Coatings from ZrCl4-C3H6-H2

Article Preview

Abstract:

ZrC coatings were prepared by CVD using ZrCl4, C3H6, and H2 as the precursors. The mechanisms responsible for the effects of deposition temperature, H2 flow rate and inlet C/Zr ratio on the ZrC coatings were studied based on the deposition mechanism of ZrC. The results indicate that the ZrC morphologies change from a loose spherical structure to a cauliflower structure, then to a glassy structure as the deposition temperature increases from 1050°C to 1150°C, then to 1250°C. The carbon content in the ZrC coatings increases with increasing the deposition temperature. Higher inlet C/Zr ratio can lead to rough surfaces and higher carbon content. Reasonable H2 concentration can inhibit carbon deposition, and lead to a cauliflower structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

648-652

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Upadhya, J.M. Yang, and W.P. Hoffmann: Am. Ceram. Soc. Bull. Vol. 76 (1997), p.51.

Google Scholar

[2] H.O. Pierson: Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications (Noyes Publications, New York 1996).

Google Scholar

[3] W.A. Mackie, T. Xie, and M.R. Matthews: J. Vac. Sci. Technol. B Vol. 16 (1998), p. (2057).

Google Scholar

[4] T. Xie, W.A. Mackie, and P.R. Davis: J. Vac. Sci. Technol. B Vol. 14 (1996), p. (2090).

Google Scholar

[5] C.S. Chen, C.P. Liu, and C.Y. Tsao: Thin Solid Films Vol. 479 (2005), p.130.

Google Scholar

[6] T. Ogawa, K. Ikawa, and K. Iwamoto: J. Nucl. Mater. Vol. 97 (1981), p.104.

Google Scholar

[7] J.H. Park, C.H. Jung, and D.J. Kim: Surf. Coat. Tech. Vol. 203 (2008), p.324.

Google Scholar

[8] K. Ikawa: J. Less-Common Met. Vol. 44 (1976), p.207.

Google Scholar

[9] Y.G. Wang, Q.M. Liu, J.L. Liu, L.T. Zhang, and L.F. Cheng: J. Am. Ceram. Soc. Vol. 91 (2008), p.1249.

Google Scholar

[10] T. Ogawa, K. Ikawa, and K. Iwamoto: J. Mater. Sci. Vol. 14 (1979), p.125.

Google Scholar

[11] Q.M. Liu, L.T. Zhang, L.F. Cheng, and Y.G. Wang: J. Coat. Technol. Res. Vol. 6 (2009), p.269.

Google Scholar

[12] C.M. Hollabaugh, L.A. Wahman, and R.D. Reiswig: Nucl. Technol. Vol. 35 (1977), p.527.

Google Scholar

[13] K. Ikawa: J. Less-Common Met. Vol. 29 (1972), p.233.

Google Scholar

[14] K. Ikawa: J. Less-Common Met. Vol. 27 (1972), p.325.

Google Scholar

[15] R. Grisdale: J. Appl. Phys. Vol. 24 (1953), p.1082.

Google Scholar

[16] M.L. Pcarcc, and R.W. Marek: J. Am. Ceram. Soc. Vol. 51 (1968), p.84.

Google Scholar

[17] W.A. Bryant: J. Mater. Sci. Vol. 12 (1977), p.1285.

Google Scholar

[18] V. Hanna: J. Chem. Phys. Vol. 112 (2000), p.4193.

Google Scholar

[19] F. Charollais, S. Fonquernie, and C. Perrais: Nucl. Eng. Des. Vol. 236 (2006), p.534.

Google Scholar