Ultrasonic Torsional Welding of Metal/Glass Ceramics Joints

Article Preview

Abstract:

Ultrasonic welding is a suitable solid-state joining technique for producing high strength joints of similar or dissimilar materials, even of material combinations that were previously considered as not weldable. Several varieties of transmitting the ultrasound into the joining partners exist whereas the investigated torsional welding principle utilizes a ring shaped sonotrode for transmitting ultrasonic vibrations tangentially to the welding force into the workpiece. Due to the specific sonotrode geometry ultrasonic torsional welding is a remarkably gentle welding technique, allowing to join even most sensitive components e.g. sensors or brittle elements. Nevertheless, ultrasonic torsional welded joints show high tensile strengths and helium-tightness. Current investigations focus on the realization of metal/glass ceramics joints. In this project two metals with different thermal expansion coefficients have been utilized as the metal joining partner. The glass joining partner was the commercially available Li2O-Al2O3-SiO2 CERAN. For examining the microstructure light as well as scanning electron microscopy have been performed. Additionally, mechanical characterization has been carried out through tensile shear tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-244

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Murugan GS, Varma KBR, Takahashi Y et al. (2001) Nonlinear-optic and ferroelectric behavior of lithium borate–strontium bismuth tantalate glass–ceramic composite. Applied Physics Letters 78(25): 4019.

DOI: 10.1063/1.1380237

Google Scholar

[2] Andersen T, Ardeberg A, Beckers JM et al. (1999) The proposed 50 m Swedish Extremely Large Telescope. In: Proceedings of the Backaskog workshop on extremely large telescopes, p.72.

DOI: 10.1117/12.566106

Google Scholar

[3] Wagner G (1997) Ultraschallschweissen von Glas und Glaskeramik mit Metallen sowie Erzeugung von Glas, Glas-Verbunden. Werkstoffkundliche Berichte, Bd. 2. Lehrstuhl für Werkstoffkunde, Univ, Kaiserslautern.

DOI: 10.31030/2338196

Google Scholar

[4] Kaiser E (2016) Laser Welding of Glass Replaces Glueing Procedure. Laser Technik Journal 13(3): 22–25.

DOI: 10.1002/latj.201600021

Google Scholar

[5] Shakil M, Tariq NH, Ahmad M et al. (2014) Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints. Materials & Design 55: 263–273.

DOI: 10.1016/j.matdes.2013.09.074

Google Scholar

[6] Messler RW (2008) Principles of Welding: Processes, Physics, Chemistry, and Metallurgy, 1., Auflage. Wiley-VCH, Weinheim.

Google Scholar

[7] LaFond JJ, Bowden JL, Kroll LF et al. Formation of a fabric seam by ultrasonic gap welding of a flat woven fabric(US7794555B2).

Google Scholar

[8] Wagner G, Balle F, Eifler D (2012) Ultrasonic Welding of Hybrid Joints. The Journal of The Minerals, Metals & Materials Society (TMS) 64(3): 401–406.

DOI: 10.1007/s11837-012-0269-5

Google Scholar

[9] Kuckert H (2004) Ultraschall-Torsionsschweissen spröd-duktiler Werkstoffverbunde, Als Ms. gedr. Werkstoffkundliche Berichte, Bd. 10. Techn. Univ., Lehrstuhl für Werkstoffkunde, Kaiserslautern.

Google Scholar

[10] OSNABRUEGGE advanced materials (2018) Sondermetalle. http://www.os-materials.com/produkte/sondermetalle/. Accessed 15 Jan (2019).

Google Scholar

[11] Salzgitter Flachstahl GmbH (2017) Weiche Stähle zum Kaltumformen. http://www.emw-stahlservice.de. Accessed 16 Jan (2019).

Google Scholar

[12] AMCO Metall-Service GmbH (2018) Technisches Datenblatt EN AW-1050A. https://amco-metall.de/fileadmin/downloads/Datenblaetter/Datenblatt_AMCO_1050A.pdf. Accessed 16 Jan (2019).

Google Scholar

[13] Wagner J (1997) Ermittlung mechanischer Festigkeitseigenschaften und thermischer Eigenspannungen an ultraschallgeschweissten Keramik-Metall-Verbunden. Werkstoffkundliche Berichte, Bd. 3. Lehrstuhl für Werkstoffkunde, Univ, Kaiserslautern.

Google Scholar

[14] Goldstein JI, Newbury DE, Michael JR et al. (2018) Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed. 2018. Springer New York; Imprint; Springer, New York, NY.

Google Scholar

[15] Weil NA, Daniel IM (1964) Analysis of Fracture Probabilities in Nonuniformly Stressed Brittle Materials. Journal of the American Ceramic Society 47(6): 268–274.

DOI: 10.1111/j.1151-2916.1964.tb14413.x

Google Scholar

[16] Joon J (2009) Bioceramics: Properties, Characterizations, and Applications. Springer-Verlag New York, New York, NY.

Google Scholar

[17] Kollenberg W (ed) (2009) Technische Keramik: Grundlagen, Werkstoffe, Verfahrenstechnik, 2. Aufl. Vulkan-Verlag, Essen.

Google Scholar