Thermoplastic Multi-Material Nonwovens from Recycled Carbon Fibres Using Wet-Laying Technology

Article Preview

Abstract:

In this study, multi-material nonwovens were produced using a wet laying nonwoven batch process. The aim of this work is to investigate and develop nonwoven material solutions that can be used for a substitution of pure glass fibre (GF)-applications and also provide a more cost-sensitive option compared to nonwovens purely made from recycled carbon fibres (rCF). The multi-material-nonwovens of this study consisted of the functional components rCF and GF as well as a thermoplastic matrix, built by the admixture of PA6-fibres. All three fibre types were mixed directly within the nonwoven manufacturing process, respectively in the course of the initial weighed portions. Six different material compositions with individual amounts of rCF and GF were produced, but a constant overall fibre volume content (FVC) as well as a uniform grammage was defined. A hot pressing technique was used to consolidate these multi-material-nonwoven layers. Subsequently, the sheet materials were examined using tensile and 4-point bending tests, as well as wet-chemical fibre volume content determinations and micrographic sections. With regard to the mechanical performance, a near-linear increase is observed for increased proportions of recycled carbon fibres. In this context a potential for the use of multi-material-nonwovens consisting of rCF and GF can be found. It is demonstrated that rCF might be an adequate substituent for classical GF-applications. The results contribute to broadening the performance spectrum of rCF and thus to its substantial recycling route.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-216

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sauer (CCeV), M. Kühnel (CCeV), E. Witten (AVK), Composites-Marktbericht 2018: Marktentwicklungen, Trends, Ausblicke und Herausforderungen, (2018).

Google Scholar

[2] M. Limburg PQ, Entsorgung von Carbonfasern: Probleme des Recyclings und Auswirkungen auf die Abfallverbrennung, (2016).

Google Scholar

[3] J. Stockschläder, P. Quicker, Energetische Verwertung von CFK-Abfällen – Zwischenstand zum Ufoplan Vorhaben CFK (2017).

Google Scholar

[4] J. Stockschläder, T. Horst, P. Quicker, Stofflich-energetische Nutzung von Carbonfaser-haltigen Abfällen in der Stahlproduktionsroute, CCeV Strategiekreis Nachhaltigkeit (2018).

Google Scholar

[5] A. Hohmann, B. Schwab, D. Wehner, S. Albrecht. MAI Enviro: Vorstudie zur Lebenszyklus-analyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten, Stuttgart, Fraunhofer Verlag, (2015).

Google Scholar

[6] M. Achternbosch, Analyse der Umweltauswirkungen bei der Herstellung, dem Einsatz und der Entsorgung von CFK- bzw. Aluminiumrumpfkomponenten, (2003).

DOI: 10.14512/tatup.12.1.86

Google Scholar

[7] H. Fuchs, W. Albrecht, Vliesstoffe: Rohstoffe, Herstellung, Anwendung, Eigenschaften, Prüfung, 2nd ed.: Wiley-VCH Verlag GmbH & Co. KGaA, (2012).

DOI: 10.1002/9783527645862

Google Scholar

[8] C. Cherif, Textile Werkstoffe für den Leichtbau – Vliesstoffhalbzeuge und Vliesbildungs-techniken, Springer Berlein Heidelberg, (2011).

DOI: 10.1007/978-3-642-17992-1

Google Scholar

[9] F. Henning, E. Moeller, Handbuch Leichtbau, Carl Hauser Verlag München, (2011).

Google Scholar

[10] B. Gulich, CF-Plant: Das Potential von rCF in Naturfaserverstärkten Kunststoffen, Chemnitz, (2017).

Google Scholar

[11] S. Kreuzinger, J. Bachmann, Laborverfahren zur Mischung von Fasern als Vorbereitung zur Vliesstoffherstellung, (2015).

Google Scholar

[12] J. Freudenberg, Possibilities for processing of recycled carbon fibres with the wet-laid technology, Nonwoven Innovation Academy, Leeds, 05.-06.11.(2015).

Google Scholar