[1]
A. Vlot, J.W. Gunnink, Fibre Metal Laminates, Kluwer Academic Publishers, Dordrecht, The Netherlands, (2001).
Google Scholar
[2]
E.C. Botelho, R.A. Silva, L.C. Pardini, M.C. Rezende, A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 2006, 9 (3), p.247–56.
DOI: 10.1590/s1516-14392006000300002
Google Scholar
[3]
J. Sinke, Manufacturing of GLARE Parts and Structures, Applied Composite Materials 10, p.293–305, (2003).
Google Scholar
[4]
B.-A. Behrens, M. Vucetic, A. Neumann, T. Osiecki, N. Grbic, Experimental test and FEA of a sheet metal forming process of composite material and steel foil in sandwich design using LS-DYNA, 18th International ESAFORM Conference on Material Forming, 15.-17. April 2015, Graz, Key Engineering Materials Vols. 651-653, pp.439-445, (2015).
DOI: 10.4028/www.scientific.net/kem.651-653.439
Google Scholar
[5]
B.-A. Behrens, A. Bouguecha, C. Bonk, H. Schulze, Finite element analysis regarding the forming behaviour of symmetric hybrid structures consisting of two sheet metal outer layers and a thermoplastic core, 4th International Conference Recent Trends in Structural Materials, 9.-11. November 2016, Pilsen, Materials Science and Engineering 179, 012004, (2017).
DOI: 10.1088/1757-899x/179/1/012004
Google Scholar
[6]
T. Wollmann, M. Hahn, S. Wiedemann, A. Zeiser, J. Jaschinski, N. Modler, N. Ben Khalifa, F. Meißen, C. Paul, Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing, Archives of Civil and Mechanical Engineering 18, pp.442-450, (2018).
DOI: 10.1016/j.acme.2017.09.001
Google Scholar
[7]
A. Rajabi, M. Kadkhodayan, M. Manoochehri, R. Farjadfar, Deep-drawing of thermoplastic metal-composite structures: Experimental investigations, statistical analyses and finite element modeling, Journal of Materials Processing Technology 215, pp.159-170, (2015).
DOI: 10.1016/j.jmatprotec.2014.08.012
Google Scholar
[8]
M. Harhash, O. Sokolova, A. Carradó, H. Palkowski, Mechanical properties and forming behaviour of laminated steel/polymer sandwich systems with local inlays – Part 1, Composite Structures 118, pp.112-120, (2014).
DOI: 10.1016/j.compstruct.2014.07.011
Google Scholar
[9]
M. Harhash, A. Carradò, H. Palkowski, Mechanical properties and forming behaviour of laminated steel/polymer sandwich systems with local inlays – Part 2: Stretching and deep drawing, Composite Structures 160, pp.1084-1094, (2017).
DOI: 10.1016/j.compstruct.2016.10.111
Google Scholar
[10]
M. Harhash, R.R. Gilbert, S. Hartmann, H. Palkowski, Experimental characterization, analytical and numerical investigations of metal/polymer/metal sandwich composites – Part 1: Deep drawing, Composite Structures, (2018).
DOI: 10.1016/j.compstruct.2018.06.066
Google Scholar
[11]
A. Atrian, H. Panahi, Experimental and finite element investigation on wrinkling behaviour in deep drawing process of Al3105/Polypropylene/Steel304 sandwich sheets, 17th International Conference on Metal Forming, 16.-19. September 2018, Toyohashi, Procedia Manufacturing 15, pp.984-991, (2018).
DOI: 10.1016/j.promfg.2018.07.396
Google Scholar
[12]
T. Mennecart, H. Werner, N. Ben Khalifa, K.A. Weidenmann, Developments and Analyzes of alternative processes for the manufacturing of fiber metal laminates, Proceedings of the 13th Manufacturing Science and Engineering Conference (MSEC2018), June 18-22, 2018, College Station, Texas, USA.
DOI: 10.1115/msec2018-6447
Google Scholar
[13]
H. Werner, I. Sönmez, R. Wendel, F. Henning, K.A. Weidenmann, Characterization of the interlaminar shear strength of fiber metal laminates with reactively processed thermoplastic matrix, Proceedings of SAMPE Europe Conference 2017, Stuttgart, Germany, (2017).
Google Scholar
[14]
H.O. Werner, D. Dörr, F. Henning, L. Kärger, Numerical Modeling of a Hybrid Forming Process for Three-Dimensionally Curved Fiber-Metal Laminates, Proceedings of ESAForm 2019, Vitoria-Gasteiz, 8th-10th May (2019).
DOI: 10.1063/1.5112524
Google Scholar