Influence of Welding Temperature and Weathering on Inductive Welded Hybrid Joints Made of Steel and TP-FRPC

Article Preview

Abstract:

Aim of this study is to investigate the influence of welding temperature and weathering on bond strength of induction welded hybrid joints made of steel and thermoplastic fiber reinforced polymer composites (TP-FRPC). The used TP-FRPC are continuous glass fiber reinforced-polyamide 6 (PA6), -polypropylene (PP), -polycarbonate (PC) and-polyphenylenesulfide (PPS). The metal sheets are mild steel (1.0338 and 1.0330). The surface pretreatments of the metal sheets are either laser structuring in line pattern, perpendicular to the load direction, or two different types of functional coating adhesives (Köratac HL 400 and Köratac HL 403) currently used in coil-coating processes. First the process parameters were optimized for each material combination by investigating the bond strength at different welding temperatures. In a second step, for each material combination, specimens were welded using the determined welding temperatures with the highest bond strength in order to investigate the influence of weathering on hybrid joints. Therefore the cataplasma test (DIN EN 13523-27: 2009) as well as alternating climatic change (BMW PR 308.2) were used.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Mitschang, R. Velthuis und M. Didi, Induction Spot Welding of Metal/CFRPC Hybrid Joints,, Advanced Engineering Materials. Vol. 15, pp.804-813, (2013).

DOI: 10.1002/adem.201200273

Google Scholar

[2] M. Didi, S. Emrich, P. Mitschang, Kopnarski und M., Characterization of Long-Term Durability of Induction Welded Aluminum/Carbon Fiber Reinforced Polymer-Joints,, Advanced Engineering Materials, pp.821-829, 19 August (2013).

DOI: 10.1002/adem.201200288

Google Scholar

[3] P. Mitschang und S. Weidmann, Influence of penetration depth on lap shear strength of induction welded steel/TP-FRPC joints,, ECCM18 - 18th European Conference on Composite Materials, (2018).

DOI: 10.4028/www.scientific.net/kem.809.217

Google Scholar

[4] S. Becker und P. Mitschang, Influence of Textile Parameters on the Induction Heating Behaviour of CFRPC,, 21st. International Conference on Composite Materials, (2017).

Google Scholar

[5] M. Hümbert, Induktiver Schweißprozess für glasfaserverstärkte Thermoplaste und Stahl, Kaiserslautern: IVW Schriftreihe, (2017).

Google Scholar

[6] V. Rudnev, D. Loveless, R. L. Cook und B. M., Handbook of Induction Heating, Taylor & Francis, (2002).

Google Scholar

[7] G. Benkowsky, Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißen ; Grundlagen und praktische Anleitungen für Induktionserwärmungsverfahren, insbesondere auf dem Gebiet der Hochfrequenzerwärmung, Berlin: Technik, (1990).

DOI: 10.1002/maco.19750260128

Google Scholar

[8] S. Zinn und S. L. Semiatin, Elements of induction heating: Design, control, and applications, Ohio: ASM Interantional, (2010).

Google Scholar

[9] K. Jung, Y. Kawahito und S. Katayama, Laser Direct Joining of CFRP to Metal or Engineering Plastic,, Transactions of JWRI, pp.5-8, (2013).

Google Scholar

[10] R. Velthuis, Induction welding of fiber reinforced thermoplastic polymer composites to metals, Kaiserslautern: IVW Schriftreihe, (2007).

Google Scholar

[11] S. Scheik, M. Schleser und U. Reisgen, Thermisches Direktfügen von Metall und Kunststoff – Eine Alternative zur Klebtechnik?,, in Leichtbau-Technologien im Automobilbau, Wiesbaden, Springer Vieweg, 2014, pp.89-94.

DOI: 10.1007/978-3-658-04025-3_16

Google Scholar

[12] A. Klotzbach, M. Langer, R. Pautzsch, J. Standfuß und E. Beyer, Thermal direct joining of metal to fiber reinforced thermoplastic components,, Journal of Laser Applications, Bd. 29, Nr. 2, pp.362-369, (2017).

DOI: 10.2351/1.4983243

Google Scholar

[13] P. Amend, S. Pfindel und M. Schmidt, Thermal Joining of Thermoplastic Metal Hybrids by Means Of Mono- and Polychromatic Radiation,, Physics Procedia, Nr. 41, pp.98-105, (2013).

DOI: 10.1016/j.phpro.2013.03.056

Google Scholar