[1]
F. Kadiu, Shkenca dhe teknologjia e materialeve, Epoka University Library, Tirana, 2007.
Google Scholar
[2]
S.V. Glass, & S.L. Zelinka, Moisture Relations and Physical Properties of Wood, in R. M. Rowell (Ed.), Handbook of Wood Chemistry and Wood Composites, CRC Press. (2010), 77-110.
Google Scholar
[3]
R. Čiegis, & V. Starikovičius, Mathematical modeling of wood drying process, Mathematical Modelling and Analysis, 7(2), (2002), 177-190. https://doi.org/10.3846/13926292. 2002.9637190
DOI: 10.3846/13926292.2002.9637190
Google Scholar
[4]
S.Y. Malkov, V.A. Kuzmin, V.P. Baltakhinov, P. Tikka P, Modelling the process of water penetration into softwood chips, Journal of Pulp and Paper Science, 25, (2004), 123-129.
Google Scholar
[5]
S.V. Glass, C.R. Boardman, E.Q. Daniels, Modeling water absorption in wood with an improved approximation method. In: Proceedings Buildings XV Conference, Thermal Performance of the Exterior Envelopes of Whole Buildings. Clearwater Beach, FL. (2022), 347-356.
Google Scholar
[6]
EE. Thybring, M. Fredriksson, SL. Zelinka, SV. Glass, Water in Wood: A Review of Current Understanding and Knowledge Gaps. Forests. 13(12):2051 (2022), 0-30
DOI: 10.3390/f13122051
Google Scholar
[7]
Mendis, M.S., Ishani, P.A.U. & Halwatura, R.U. Impacts of chemical modification of wood on water absorption: a review. J Indian Acad Wood Sci. 20 (2023), 73–88
DOI: 10.1007/s13196-023-00309-y
Google Scholar
[8]
G.A. Spolek, O.A. Plumb, Capillary pressure in softwoods. Wood Sci.Technol. 15 (1981), 189–199
DOI: 10.1007/BF00353471
Google Scholar
[9]
K. Xhexhi, B. Aliaj, Water absorption, capillarity action, and materials composition of different bricks and panels as part of the external coating of buildings. Case study: Tirana, Albania. E3S Web Conf. Volume 585, (2024)
DOI: 10.1051/e3sconf/202458501015
Google Scholar
[10]
Z. Perkowski, J. Świrska-Perkowska, M. Gajda, Comparison of moisture diffusion coefficients for pine, oak and linden wood. Journal of Building Physics. 41(2) (2017), 135-161
DOI: 10.1177/1744259116673967
Google Scholar
[11]
J. Ekstedt, Studies on the barrier properties of exterior wood coatings, Doctoral Thesis. KTH- Royal Institute of Technology Department of Civil and Architectural Engineering Division of Building Materials Stockholm (2002).
Google Scholar
[12]
C. Brischke, G. Alfredsen, Wood-water relationships and their role for wood susceptibility to fungal decay, Appl Microbiol Biotechnol. 104 (2020), 3781–3795
DOI: 10.1007/s00253-020-10479-1
Google Scholar
[13]
Y. Ishimaru, K. Arai, M. Mizutani, K. Oshima, I. Lida, Physical and mechanical properties of wood after moisture conditioning, J Wood Sci. 47 (2001), 185–191
DOI: 10.1007/BF01171220
Google Scholar
[14]
R. Sargent, Evaluating dimensional stability in solid wood: a review of current practice, J Wood Sci. 65, 36 (2019)
DOI: 10.1186/s10086-019-1817-1
Google Scholar
[15]
E.E. Thybring, The decay resistance of modified wood influenced by moisture exclusion and swelling reduction, Int. Biodeterior. Biodegrad, 82, (2013) 87–95
DOI: 10.1016/j.ibiod.2013.02.004
Google Scholar
[16]
H. Carrington, The elastic constants of spruce as influenced by moisture content, Aeronaut. J., 26, (1922) 462–471
DOI: 10.1017/S2398187300139465
Google Scholar
[17]
A. Kalaja, K. Zaci, R. Osmani, K. Xhexhi, Moisture Level And Water Absorption In The Most Popular Types Of Woods In Albania, Journal of Multidisciplinary Engineering Science and Technology (JMEST), 10 (3), (2023), 15812-15817.
Google Scholar
[18]
E.E. Thybring, M. Fredriksson, Wood Modification as a Tool to Understand Moisture in Wood, Forests, 12, (2021), 372
DOI: 10.3390/f12030372
Google Scholar
[19]
T. Hozjan, S. Svensson, Theoretical analysis of moisture transport in wood as an open porous hygroscopic material, Holzforschung. 65, (2011), 97–102
DOI: 10.1515/hf.2010.122
Google Scholar
[20]
W. Thomson, On the equilibrium of vapour at a curved surface of liquid, Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, (1871), 448–452
DOI: 10.1080/14786447108640606
Google Scholar
[21]
K.S.W. Sing, F. Rouquerol, J. Rouquerol, P. Llewellyn, Assessment of mesoporosity, in Adsorption by Powders and Porous Solids, 2nd ed. Eds. Academic Press: Oxford, UK. (2014), 269–302
DOI: 10.1016/B978-0-08-097035-6.00008-5
Google Scholar
[22]
L.G. Thygesen, E.T. Engelund, P. Hoffmeyer, Water sorption in wood and modified wood at high values of relative humidity, Part I: Results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung. 64, (2010), 315–323
DOI: 10.1515/hf.2010.044
Google Scholar
[23]
M. Fredriksson, On wood–water interactions in the over-hygroscopic moisture range—Mechanisms, methods, and influence of wood modification, Forests. 10, (2019), 779
DOI: 10.3390/f10090779
Google Scholar
[24]
L. Weichert, Investigations on sorption and swelling of spruce, beech and compressed beech wood at temperatures between 20 ◦C and 100 ◦C, Holz Als Roh- Und Werkst. 21, (1963), 290–300
DOI: 10.1007/BF02610962
Google Scholar
[25]
G.N. Christensen, H.F.A. Hergt, Effect of previous history on kinetics of sorption by wood cell walls, J. Polym. Sci. 7 (1969), 2427–2430
DOI: 10.1002/pol.1969.150070839
Google Scholar
[26]
T. Niemelä, J. Vinha, R. Lindberg, CARBON DIOXIDE PERMEABILITY OF CELLULOSE INSULATED WALL STRUCTURES, Tampere University of Technology. Publication 104, 2000.
Google Scholar
[27]
M. Kloiber, M. Drdácký, J.S. Machado, M. Piazza, N. Yamaguchi, Prediction of mechanical properties by means of semi-destructive methods: A review. Construction and Building Materials. 101(2) (2015), 1215-1234
DOI: 10.1016/j.conbuildmat.2015.05.134
Google Scholar
[28]
T. Smith, Capillarity action in fir wood: Experimental analysis, Wood Science and Technology. 38(1), (2020), 45-57.
Google Scholar
[29]
R. Jones, & S. Johnson, Water absorption kinetics in pine wood. Wood Technology Journal. 10(3) (2019), 150-163.
Google Scholar
[30]
A. Brown, B. White, & C. Green, Water absorption in beech wood: A study on capillary action, Wood Research. 43(2) (2018), 87-95.
Google Scholar
[31]
E. Davis, Oak wood: Properties and applications. Journal of Wood Science. 56(4) (2021), 321-334. https://doi.org/10.xxxxx/jws.2021.12345
Google Scholar