p.1
p.17
p.45
p.51
p.65
p.73
p.79
p.91
p.115
Status and Trends in Fusion-Based Surface Modification Techniques for Self-Lubricating High Temperature Properties in Austenitic Stainless Steel Using Refractories
Abstract:
This paper conducted extensive review of extant literature on fusion-based technique for surface modification of austenitic stainless steel AISI 304 grade (304SS) for high temperature self-lubricating application using refractory carbides. Careful systematic review of available literature indicates that among the families of refractory carbides, only silicon carbide (SiC) and titanium carbide (TiC) were successfully adsorbed on the surface of 304SS via fusion melting techniques with TiC having more documentation. Yet, this information was limited to ambient temperature properties of the TiC coatings as such high temperature properties as creep-fatigue, thermal stability, hot corrosion and oxidation were not reported. Additionally, information on the incorporation of hexagonal boron nitride (hBN) into TiC coatings to address the high temperature self-lubricating challenges associated with the alloy was not available. Further, literature is scarce on multi-layer longitudinal and transverse coatings to address the challenges inherent with single layer coating. The review established that there is a wide gap in both knowledge and practice in the deposition of self-lubricating high temperature properties in 304SS substrate material using fusion-based technique which offers a window for research exploration.
Info:
Periodical:
Pages:
17-43
Citation:
Online since:
May 2025
Price:
Сopyright:
© 2025 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] G.S. Was, S. Ukai, Austenitic stainless steels, in: G.R. Odette, S.J. Zinkle (Eds.),Structural alloys for nuclear energy applications. Elsevier, Amsterdam, Netherlands, 2019, pp.293-347.
[2] M. Heczko, B.D. Esser, T.M. Smith, P. Beran, V.Mazánová, D.W. McComb, T. Kruml, J. Polák, M.J. Mills, Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel, Mater. Sci. Eng. A. 719 (2018) 49-60.
[3] Information on http://www.grandviewresearch.com
[4] M. Corradi, A. Di Schino, A. Borri, R. Rufini, A review of the use of stainless steel for masonry repair and reinforcement, Constr. Build. Mater, 181 (2018) 335-346.
[5] H. K. D. H. Bhadeshia, R. Honeycombe, Steels: microstructure and properties, Forth ed., Butterworths-Heinemann, Elsevier, Oxford, 2017.
[6] Y. S. Ji, J. Park, S. Y. Lee, J. W. Kim, S. M. Lee, J. Nam, J. Nam, B. Hwang, J.Y. Suh, J. H. Shim, Long-term evolution of σ phase in 304H austenitic stainless steel: Experimental and computational investigation. Mater. Charact. 128 (2017) 23-29.
[7] C.S. Ouyang, X.B. Liu, Y.S. Luo, J. Liang, M. Wang, D. Chene, Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on 304 stainless steel, J.Mater.Res.Technol, 9 (2020) 7034-7046.
[8] R.K. Desu, H.N. Krishnamurthy, A. Balu, A.K. Gupta, S.K. Singh, Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures, J. Mater.Res. Technol. 5 (2016) 13-20.
[9] M. Calmunger, R. Eriksson, G. Chai, S. Johansson, J. Moverare, Surface phase transformation in austenitic stainless steel induced by cyclic oxidation in humidified air, Corros. Sci. 100 (2015) 524-534.
[10] A. Perron, C. Toffolon-Masclet, X. Ledoux, F. Buy, T. Guilbert, S. Urvoy, S. Bosonnet, B. Marini, F. Cortial, G. Texier, C. Harder, V. Vignal, P.H. Petit, J. Farré, E. Suzona, Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations, Acta Mater. 79 (2014) 16-29.
[11] M. M. Kumari, S. Natarajan, J. Alphonsa, Dry sliding wear behaviour of plasma nitrocarburised AISI 304 stainless steel using response surface methodology, Surf. Eng. 26 (2010)191–198.
[12] L. Huang, Micromechanical simulation and experimental investigation of the creep damage of stainless austenitic steels, Pierre and Marie Curie University, Paris, 2017.
[13] C.K. Sahoo, L. Soni, M. Masanta, Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process, Surf. Coat. Technol. 307: 17–27
[14] L. Song, G. Zeng, H. Xiao, X. Xiao, S. Li, Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders. J. Manuf. Process. 24 (2016) 116–124.
[15] S. Buytoz, M. Ulutan, In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying. Surf. Coat. Technol. 200 (2006) 3698-3704.
[16] H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew, Elsevier, USA, 1996.
[17] T. Yamaguchi, H. Hagino, Formation of a titanium-carbide-dispersed hard coating on austenitic stainless steel by laser alloying with a light-transmitting resin, Vacuum, 155 (2018) 23–28.
[18] E.R.I. Mahmoud, Characterizations of 304 stainless steel laser cladded with titanium carbide particles, Adv. Produc. Eng. Manag.10 (2015) 115–124.
[19] E.R.I. Mahmoud, Microstructure, wear and corrosion characteristics of 304 stainless steel laser cladded with titanium carbide, Int. J. Eng. Tech. Mgmt. Res. 4 (2015) 422-427.
[20] K. Ushashri, M. Masanta, Hard TiC coating on AISI304 steel by laser surface engineering using pulse Nd:YAG laser. Materials and Manufacturing processes, 30(2015) 730-735.
[21] J. Gasia, L. Miró, L.F Cabeza, Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. Renew. Sustain. Energy Rev. 75 (2017) 1320-1338.
[22] C.A.C. Sequeira, L. Amaral, Strengthening mechanisms of materials for high temperature application, Corros. Protec. Mater. 32 (2013) 75-81.
[23] X.L. Lu, X.B. Liu, P.C. Yu, Y. Chen, G.L. Shi, S.H. Wu, D. Xu, Effect of post heat treatment on the microstructure and tribological properties of 304 stainless steel laser cladding Ni60/h-BN self-lubricating and wear-resistant composite coating, J. Tribol. 36 (2016) 48-54.
[24] K.A. Bello, M.A. Maleque, Z. Ahmad, A.A. Adebisi, S. Mirdha, Preparation and characterization of TIG-alloyed hybrid composite coatings for high temperature solid lubrication, Proc. Mal. Int. Tribol. Conf. 3 (2015) 265-267.
[25] X.L. Lu, X.B. Liu, P.G. Yu, Y.J. Zhai, S.J. Qiao, M.D. Wang, Y.G. Wang, Y. Chen, Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding. Appl. Surf. Sci. 355 (2015) 350–358.
[26] T. Sunil, M. Sandeep, R. Kumaraswami, A. Shravan, A critical review on solid lubricants, Int. J. Mech. Eng. Technol. 7 (2016) 193–199.
[27] S. Zhu, J. Cheng, Z. Qiao, J. Yang, High temperature solid-lubricating materials: A review. Tribol. Int. 133 (2019) 206–223.
[28] Y. Zhang, R.R. Chromik, Tribology of Self-Lubricating Metal Matrix Composites, In: P.L. Menezes, P.K. Rohatgi, E. Omrani, (Eds.), Self-Lubricating Composites. Springer, Berlin, Heidelberg, 2018, pp.33-73.
[29] V. Sudarsan, Materials for hostile chemical environments, In: A.K. Tyagi, S. Banerjee, (Eds.), Materials Under Extreme Conditions-Recent Trends and Future Prospects. Elsevier. Amsterdam, Netherlands, 2017, pp.129-158.
[30] X. Duan, Z. Yang, L. Chen, Z. Tian, D. Cai, Y. Wang, D. Jia, Y. Zhou, Review on the properties of hexagonal boron nitride matrix composite ceramics. J. Eur. Ceram. 36 (2016) 3725-3737.
[31] A. Toudehdehghan, J.W. Lim, K.E. Foo, M.I.N. Ma'arof, J. Mathews, A brief review of functionally graded materials. In: MATEC Web Conferences. EDP Sciences, 2017, 131.
[32] S. Mridha, T.N. Baker, Overlapping tracks processed by TIG melting TiC preplaced powder on low alloy steel surfaces, Mater. Sci. Technol. 31(2015) 337-343.
[33] S. Mridha, A.N. Md Idriss, M.A. Maleque, I.I. Yaacob, T.N. Baker, Melting of multipass surface tracks in steel incorporating titanium carbide powders, Mater. Sci. Technol. 31(2015) 1362-1369.
[34] K.A. Kuptsov, A.N. Sheveyko, O.S. Manakova, D.A. Sidorenko, D.V. Shtansky, Comparative investigation of single-layer and multilayer Nb-doped TiC coatings deposited by pulsed vacuum deposition techniques, Surf. Coat. Technol. 385(2020) 125422.
[35] M. Naebe, K. Shirvanimoghaddam, Functionally graded materials: A review of fabrication and properties, Appl. Mater. Today, 5 (2016) 223–245.
[36] R.G. Bohatch, K. Graf, A. Scheid, Effect of track overlap on the microstructure and properties of the CoCrMoSi PTA coatings. Mater. Res. 18 (2015) 553-562.
[37] L. Wang, S. Xing, H. Liu, C. Jiang, V. Ji, Improved wear properties of Ni Ti nanocomposite coating with tailored spatial microstructures by extra adding CeO2 nanoparticles, Surf. Coat. Technol. 399 (2020) 126119.
[38] L. Wang, J. Sun, B. Kang, S. Li, S. Ji, Z. Wen, X. Wang, Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate, J. Power Sources, 246 (2014) 775-782.
[39] Z. Zhang, T. Yu, R. Kovacevic, . Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC, Appl. Surf. Sci. 410 (2017) 225–240.
[40] Q. Wang, S. Zhang, C. Zhang, C. Wu, J. Wang, J. Chen, Z. Sun, Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing, Vacuum. 141 (2017) 68-81.
[41] D. Kotoban, A. Aramov, T. Tarasova, Possibility of multi-material laser cladding fabrication of nickel alloy and stainless steel, Phys. Procedia, 83 (2016) 634-646.
[42] H.F. Rafi, N.V. Karthik, H. Gong, T.L. Starr, B.E. Stucker, Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting, J. Mater. Eng. Perform. 22 (2013) 3872–83.
[43] N.P. Gokhale, P. Kala, V. Sharma, Thin-walled metal deposition with GTAW welding-based additive manufacturing process, J. Braz. Soc. Mech. Sci. Eng. 41(2019) 569.
[44] L. Quintino, Overview of coating technologies, In: R. Miranda (Eds.), Surface Modification by Solid State Processing. Woodhead Publishing, Elsevier, USA, 2014, pp.1-24.
[45] S. Kumar, P.K. Ghosh, R. Kumar, Surface modification of AISI 4340 steel by multi-pass TIG arcing process, J. Mater. Process. Technol. 249 (2017) 394–406.
[46] R.M. Farias, P.R.F. Teixeira, L.O. Vilarinho, An efficient computational approach for heat source optimization in numerical simulations of arc welding processes, J. Constr. Steel Res. 176 (2021) 106382.
[47] A. Kumar, T. DebRoy, Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions, Metall. Mater. Trans. A. 38 (2007) 506–519.
[48] S. Bag, A. Trivedi, A. De, Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source, Int. J. Therm. Sci. 48 (2009) 1923-1931.
[49] P. Podrzaj, An overview of arc welding control systems, Prog. Electr. Electron. Eng. 1 (2019) 871-871.
[50] J.H. Abboud, K.Y. Benyounis, H. Julifkar, M.S.J. Hashmi, Material response with high power laser in surface treatment of ferrous alloys. In: Reference Module in Materials Science and Materials Engineering. Elsevier, Oxford, UK, 2017, 1-12
[51] R.S. Ningthoujam, Synthesis and characterization of borides, carbides, and nitrides and their applications, In: A.K. Tyagi, S. Banerjee (Eds.), Materials Under Extreme Conditions- Recent Trends and Future Prospects. Elsevier, USA, 2017, pp.337-375.
[52] R. Mishra, R.S. Ningthoujam, High-temperature ceramics, In: A.K. Tyagi, S. Banerjee (Eds.), Materials Under Extreme Conditions-Recent Trends and Future Prospects. Elsevier. Amsterdam, Netherlands, 2017, pp.377-409.
[53] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, Boron carbide: structure, properties, and stability under stress, J. Am. Ceram. Soc. 94 (2011) 3605–3628.
[54] K.Y. Xie, V. Domnich, L. Farbaniec, B. Chen, K. Kuwelkar, L. Ma, J.W. McCauley, R.A. Haber, K.T. Ramesh, M. Chen, K.J. Hemker, Microstructural characterization of boron-rich boron carbide, Acta Mater. 136 (2017) 202-214.
[55] Y. Sun, Q. Meng, M. Qian, B. Liu, K. Gao, Y. Ma, M. Wen, W. Zheng, Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles, Sci. Rep. 6 (2016) 20198.
DOI: 10.1038/srep20198
[56] H. Hu, J. Kong, Improved thermal performance of diamond-copper composites with boron carbide coating, J. Mater. Eng. Perform. 23 (2014) 651–657.
[57] A.M. Engwall, L.B. Bayu Aji, S.J. Shin, P.B. Mirkarimi, J.H. Bae, S.O. Kucheyev, Sputter-deposited low-stress boron carbide films, J. Appl. Phys. 128 (2020) 1-9.
DOI: 10.1063/5.0022191
[58] H. Zhu, Y. Niu, C. Lin, L. Huang, H. Ji, X. Zheng, Fabrication and tribological evaluation of vacuum plasma-sprayed B4C coating, J. Therm. Spray Technol. 21 (2012) 1216–1223.
[59] J.D. Majumdar, B.R. Chandra, A.K. Nath, I. Manna, Laser composite surfacing of stainless steel with SiC, Phys. Status Solidi A, 203 (2006) 2260–2265.
[60] A. Kumar, A.K. Das, Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304 stainless steel, Eng. Sci. Technol. Int. J. 24 (2021) 591-604.
[61] Kumar, A.K. Das, Mechanical properties of Fe+SiC metal matrix composite fabricated on stainless steel 304 by TIG coating process, Int. J. Mater. Eng. Innov. 11(2020) 181–197.
[62] Kumar, R.K. Ram, A.K. Das, Mechanical characteristics of Ti-SiC metal matrix composite coating on AISI 304 steel by gas tungsten arc (GTA) coating process, Mater. Today, 17 (2019) 111–117.
[63] N. Barnes, S. Clark, S. Seetharaman, P.F. Mendez, Growth mechanism of primary needles during the solidification of chromium carbide overlays, Acta Mater. 151 (2018) 356-365.
[64] H.C. Wang, H.H. Sheu, C.E. Lu, K.H. Hou, M.D. Ger, Preparation of corrosion-resistant and conductive trivalent Cr–C coatings on 304 stainless steel for use as bipolar plates in proton exchange membrane fuel cells by electrodeposition, J. Power Sources. 293 (2015) 475-483.
[65] H.C. Wang, K.H. Hou, C.E. Lu, M.D. Ger, The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells, Thin Solid Films, 570 (2014) 209-214.
[66] C.E. Lu, N.W. Pu, K.H. Hou, C.C. Tseng, M.D. Ger, The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium, Appl. Surf. Sci. 282 (2013) 544-551.
[67] V.S. Protsenko, V.O. Gordiienko, F.L. Danilov, Unusual chemical mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath, Electrochem. Commun. 17 (2012) 85-87.
[68] A. Ghadi, M. Soltanieh, H. Saghafian, Z.G. Yang, Investigation of chromium and vanadium carbide composite coatings on CK45 steel by thermal reactive diffusion, Surf. Coat. Technol. 289 (2016) 1-10.
[69] D.D.L. Chung, Carbon-matrix composites: Coating with chromium carbide, In: D.D.L. Chung (Eds.), Carbon Composites- Composites with Carbon Fibers, Nanofibers, and Nanotubes (Second Edition). Butterworth-Heinemann, Elsevier, Oxford, UK, 2017, 387- 466.
[70] Q. Kang, X. He, S. Ren, L. Zhang, M.W.C. Guo, W. Cui, X. Qu, Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications, Appl. Therm. Eng. 60 (2013) 423-429.
[71] S.E. Aghili, M. Shamanian, Investigation of powder fed laser cladding of NiCr-chromium carbides single-tracks on titanium aluminide substrate, Opt. Laser Technol. 119 (2019) 105652.
[72] S.E. Aghili, M. Shamanian, A.R. Najafabadi, A. Keshavarzkermani, R. Esmaeilizadeh, U. Ali, E. Marzbanrad, E. Toyserkani, . Microstructure and oxidation behaviour of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate, Ceram Int. 46 (2020) 1668-1679.
[73] L. Wang, Y. Tao, Z. Zhang, Y. Wang, Q. Feng, H. Wang, H. Li, Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 44 (2019) 4940-4950.
[74] Z. Zhao, P. Hui, T. Wang, Y. Xu, L. Zhong, M. Zhao, D. Yang, R. Wei, Fabrication of Mo2C coating on molybdenum by contact solid carburization, Appl. Surf. Sci. 462 (2018) 48-54.
[75] K.B. Kushkhov, F.Y. Kuchmezova, M.N. Adamokova, A.M. Asanov, Electrodeposition of coatings of double carbides of tungsten and molybdenum from tungstate–molybdate–carbonate solutions, Russ. J. Non-Ferr. Met. 57 (2016) 515–520.
[76] A. Robin, A.F. Sartori, Electrodeposition of molybdenum carbide from molten salts, In: U. S. Mohanty (Eds.), Electrodeposition: Properties, Processes and Applications. Nova Science Publishers, New York, 2012, pp.87-204.
[77] S. Vimalraj, R. Varahamoorthi, A.U. Bala, R. Karthikeyan, Modeling and optimizing the laser parameters for corrosion resistance in 316 SS laser hardfaced surface using tungsten carbide, Mater. Today. 26 (2020) 2485-2490.
[78] A. Santos, C. Gonzalez, Z.Y. Ramirez, Characterization of tungsten carbide coatings deposited on AISI 1020 steel, J. Phys. Conf. Ser. 786 (2017) 1-7.
[79] P. Zhang, Y. Pang, M. Yu, Effects of WC particle types on the microstructures and properties of WC-reinforced Ni60 composite coatings produced by laser cladding, Metals, 9 (2019) 583-595.
DOI: 10.3390/met9050583
[80] S. Mohammed, R.S. Rajamure, Z. Zhang, P. Balu, N.B. Dahotre, R. Kovacevic, Tailoring corrosion resistance of laser-cladded Ni/WC surface by adding rare earth elements, Int. J. Adv. Manuf. Technol. 97 (2018) 4043–4054.
[81] K.M. Wang, H.G. Fu, Y.P. Lei, Y.W. Yang, Q.T. Li, Z.Q. Su, Microstructure and property of Ni60A/WC composite coating fabricated by fiber laser cladding, Materwiss. Werksttech, 46 (2015) 1177–1184.
[82] P. Farahmand, T. Frosell, M. McGregor, R. Kovacevic, Comparative study of the slurry erosion behavior of laser cladded Ni-WC coating modified by nanocrystalline WC and La2O3, Int. J. Adv. Manuf. Technol. 79 (2015) 1607–1621.
[83] Li, Q. Zhang, F. Wang, P. Deng, Q. Lu, Y. Zhang, S. Li, P. Ma, W. Li, Y. Wang, Microstructure and wear behaviors of WC-Ni coatings fabricated by laser cladding under high frequency micro-vibration, Appl. Surf. Sci. 485 (2019) 513–519.
[84] X. Tong, F.H. Li, M. Kuang, M.Y. Ma, X.C. Chen, M. Liu, Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel, Appl. Surf. Sci. 258 (2012) 3214–3220.
[85] X. Huang, J. Zhang, Y. Cheng, C. Chen, G. Lian, J. Jiang, M. Feng, M. Zhou, Effect of h-BN addition on the microstructure characteristics, residual stress and tribological behavior of WC-reinforced Ni-based composite coatings, Surf. Coat. Technol. 405 (2021) 126534.
[86] A. Chakraborty, S. Pityana, J.D. Majumdar, Laser surface alloying of AISI 304 stainless steel with WC+Co+NiCr for improving wear resistance, Procedia Manuf. 7 (2017) 8–14.
[87] C. Li, S. Li, C. Liu, Y. Zhang, P. Deng, Y. Guo, J. Wang, Y. Wang, Effect of WC addition on microstructure and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying, Mater. Chem. Phys. 234 (2019) 9–15.
[88] A. Chakraborty, J.K. Singh, D. Sen, S. Pityana, I. Manna, S. Krishna, J.D. Majumdar, . Microstructures, wear and corrosion resistance of laser composite surfaced austenitic stainless steel (AISI 304 SS) with tungsten carbide, Opt. Laser Technol. 134 (2021) 106585.
[89] S. Anandan, S. Pityana, J.D. Majumdar, Structure-property-correlation in laser surface alloyed AISI 304 stainless steel with WC+Ni+NiCr, Mater. Sci. Eng. A, 536 (2012) 159-169.
[90] R. Singh, M. Kumar, D. Kumar, S.K. Mishra, Erosion and corrosion behavior of laser cladded stainless steels with tungsten carbide, J. Mater. Eng. Perform. 21 (2012) 2274–2282.
[91] Jalaly, F.J. Gotor, M.J. Sayagués, Mechanochemical combustion synthesis of vanadium carbide (VC), niobium carbide (NbC) and tantalum carbide (TaC) nanoparticles, Int. J. Refract. Met. Hard Mater. 79 (2019) 177-184.
[92] N.K. Paraye, P.K. Ghosh, S. Das, A novel approach to synthesize surface composite by in-situ grown VC reinforcement in steel matrix via TIG arcing, Surf. Coat. Technol. 399 (2020) 126129.
[93] R. Soltani, M.H. Sohi, M. Ansari, A. Haghighi, H.M. Ghasemi, F. Haftlang, Evaluation of niobium carbide coatings produced on AISI L2 steel via thermo-reactive diffusion technique, Vacuum, 146 (2017) 44-51.
[94] F.A.P. Fernandes, J. Gallego, C.A. Picon, T.G. Filho, L.C. Casteletti, Wear and corrosion of niobium carbide coated AISI 52100 bearing steel, Surf. Coat. Technol. 279 (2015) 112-117.
[95] A.G. Orjuela, R. Rincón, J.J. Olaya, Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition, Surf. Coat. Technol. 259 (2014) 667-675.
[96] H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene), Adv. Mater. 30 (2018) 1703284.
[97] S. Du, K. Zhang, M. Wen, Y. Qin, R. Li, H. Jin, X. Bao, P. Ren, W. Zheng, Optimizing the tribological behavior of tantalum carbide coating for the bearing in total hip joint replacement, Vacuum, 150 (2018) 222-231.
[98] M.M. Esmaeili, M. Mahmoodi, R. Imani, Tantalum carbide coating on Ti-6Al-4V by electron beam physical vapor deposition method: Study of corrosion and biocompatibility behavior, Int. J. Appl. Ceram. Technol. 17 (2017) 1–9.
DOI: 10.1111/ijac.12658
[99] Ferro, J.V. Rau, V.R. Albertini, A. Generosi, R. Teghil, S.M. Barinov, Pulsed laser deposited hard TiC, ZrC, HfC and TaC films on titanium:Hardness and an energy-dispersive X-ray diffraction study, Surf. Coat. Technol. 202 (2008) 1455–1461.
[100] E.J. Wuchina, M. Opeka, The Group IV carbides and nitrides, In: W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou (Eds.), Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications. John Wiley and Sons, New Jersey, USA, 2014, pp.361-390.
[101] Matović, B. Babić, D. Bučevac, M. Čebela, V. Maksimović, J. Pantić, M. Miljković, Synthesis and characterization of hafnium carbide fine powders, Ceram. Int. 39 (2013) 719-723.
[102] H.O. Pierson, Handbook of chemical vapor deposition (CVD): principles, technology, and applications, William Andrew, Elsevier, USA, 2012.
[103] Tallo, T. Thomberg, H. Kurig, K. Kontturi, A. Jänes, E. Lust, Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide, Carbon, 67 (2014) 607-616.
[104] H.I. Yoo, H.S. Kim, B.G. Hong, I.C. Sihn, K.H. Lim, B.J. Lim, S.Y. Moon, Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a vacuum plasma spray coating method, J. Eur.Ceram. 36 (2016) 1581-1587.
[105] Kim, J. Han, C. Park, H.G. Lee, J.Y. Park, W.J. Kim, Chemical vapor deposition of dense hafnium carbide from HfCl4–C3H6–H2 system for the protection of carbon fibers, Adv. Eng. Mater. 21(2019) 1-7.
[106] J. Ren, Y. Zhang, J. Li, S. Tian, T. Fei, H. Li, Effects of deposition temperature and time on HfC nanowires synthesized by CVD on SiC-coated C/C composites, Ceram. Int. 42 (2016) 5623-5628.
[107] K. Hans, S. Latha, P. Bera, H.C. Barshilia, Hafnium carbide based solar absorber coatings with high spectral selectivity, Sol. Energy Mater. Sol. Cells, 185 (2018) 1-7.
[108] Verdon, O. Szwedek, A. Allemand, S. Jacques, Y. Le Petitcorps, P. David, High temperature oxidation of two- and three-dimensional hafnium carbide and silicon carbide coatings, J. Eur. Ceram. Soc. 34 (2014) 879–887.
[109] H.F. Jackson, W.E. Lee, Properties and characteristics of ZrC, Compr. Nucl. Mater. 2 (2012) 339–372.
[110] Q. Liu, L. Zhang, L. Cheng, L. Wang, Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition, J. Coat. Technol. Res. 6 (2009) 269–273.
[111] Y. Wang, Q. Liu, J. Liu, L. Zhang, L. Cheng, Deposition mechanism for chemical vapor deposition of zirconium carbide coatings, J. Am. Ceram. Soc. 91(2008) 1249–1252.
[112] Liu, B. Liu, Y. Shao, Z. Li, C. Tang, Preparation and characterization of zirconium carbide coating on coated fuel particles, J. Am. Ceram. Soc. 90 (2007) 3690–3693.
[113] J. Xu, Z.Y. Li, S. Xu, P. Munroe, Z.H. Xie, A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application, J. Power Sources. 297 (2015) 359-369.
[114] V.V. Chayeuski, V.V. Zhylinski, P.V. Rudak, D.P. Rusalsky, N. Višniakov, O. Černašėjus, Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool, Appl. Surf. Sci. 446 (2018) 18-26.
[115] N. Shabrina, B. Sugeng, D.N. Haerani, A.K. Rivai, Preliminary study of zirconium carbide ceramic deposition on austenitic stainless steel by pulsed laser deposition, IOP Conf. Ser. Mater. Sci. Eng. 924 (2020) 1-5.
[116] Y.F. Liu, J.S. Mu, X.Y. Xu, S.Z. Yang, Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process, Mater. Sci. Eng. A, 458 (2007) 366-370.
[117] G.V. Galevsky, V.V. Rudneva, A.K. Garbuzova, D.V. Valuev, Titanium carbide: nanotechnology, properties, application, IOP Conf. Ser. Mater. Sci. Eng. 91 (2015) 012017.
[118] E.R.I. Mahmoud, H.F. El-Labban, Laser surface cladding of high C-Cr bearing tool steel with TiC powders, IUP J. Mech. Eng. 7 (2014) 67-79.
[119] S. Wang, Y. Li, J. Wang, T. Luo, K. Zheng, Z. Zheng, J. Long, Y. Lin, Study on the microstructure and properties of iron-based composites locally reinforced by in-situ submicron TiC particles, Mater. Chem. Phys. 287 (2022) 126376.
[120] M.T. Hosseinnejad, Z. Ghorannevis, M. Ghoranneviss, M. Soltanveisi, M. Shirazi, Preparation of titanium carbide thin film using plasma focus device, J. Fusion Energy. 30 (2011) 516–522.
[121] Z. Jiao, S. Peterkin, L. Felix, R. Liang, J.P. Oliveira, N. Schell, N. Scotchmen, E. Toyserkani, Y. Zhou, Surface modification of 304 stainless steel by electro-spark deposition, J. Mater. Eng. Perform. 27 (2018) 4799–4809.
[122] D.M. Devia, E. Restrepo-Parra, P.J. Arango, Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique, Appl. Surf. Sci. 258 (2011) 1164-1174.
[123] S. Saroj, C.K. Sahoo, M. Masanta, Microstructure and mechanical performance of TiC-Inconel825 composite coating deposited on AISI 304 steel by TIG cladding process, J. Mater. Process. Technol. 249 (2017) 490–501.
[124] S. Saroj, C.K. Sahoo, D. Tijo, M. Masanta, Sliding abrasive wear characteristic of TIG cladded TiC reinforced Inconel825 composite coating, Int. J. Refract. Met. Hard Mater. 69 (2017) 119–130.
[125] C.K. Sahoo, M. Masanta, Microstructure and mechanical properties of TiC-Ni coating onAISI304 steel produced by TIG cladding process, J. Mater. Process. Technol. 240 (2017a) 126–137.
[126] C.K. Sahoo, M. Masanta, Microstructure and tribological behaviour of TiC-Ni-CaF2 composite coating produced by TIG cladding process, J. Mater. Process. Technol. 243 (2017b) 229–245.
[127] C.K. Sahoo, M. Masanta, Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering process, Opt. Lasers Eng. 67 (2015) 36–48.
[128] B. Heidarshenas, G. Hussain, M.B.A. Asmael, Development of a TiC/Cr23C6 composite coating on a 304 stainless steel substrate through a tungsten inert gas process, Coatings, 7 (2017) 1-11.
[129] P. Hugh, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Noyes Publications, New Jersey, USA, 1996.
[130] H. Singh, K.C. Mutyala, R.D. Evans, G.L. Doll, An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments, Surf. Coat. Technol, 284 (2015) 281-289.
[131] J.M. Andrew, Solid lubricants, Tribol. Lubr. Technol. 75 (2019) 24-30.
[132] G.A. Zhang, L.P. Wang, Self-Lubricating Hard/Ultra-Hard Coatings, Encyclopedia of Tribology, Springer, USA, 2013, pp.3018-3025.
[133] W. Zhao, Solid-Like Lubricating Films, Ionic Liquid Films. In: Encyclopedia of Tribology. Springer, USA, 2013. pp.227-234.
[134] W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th ed., CRC Press, Florida, 2016.
[135] W. Pan, S. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, Low thermal conductivity oxides, MRS Bull. 37 (2012) 917-922.
DOI: 10.1557/mrs.2012.234
[136] J. Qiu, A. Wu, Y. Li, Y. Xu, R. Scarlat, D.D. Macdonald, Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt, Corros. Sci. 170 (2020) 108677.
[137] Q. Liu, H. Sun, H. Yin, L. Guo, J. Qiu, J. Lin, Z. Tang, Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles, Corros. Sci. 160 (2019) 108174
[138] H. Ju, R. Wang, N. Ding, L. Yu, J. Xu, F. Ahmed, B. Zuo, Y. Geng, Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen, Mater. Des. 186 (2020) 108300.
[139] S.N. Perevislov, Structure, properties, and applications of graphite-like hexagonal boron nitride, Refract. Ind. Ceram. 60 (2019) 291–295.
[140] Z. Chen, H. Yan, P. Zhang, Z. Yu, Q. Lu, J. Guo, Microstructural evolution and wear behaviors of laser-clad Stellite 6/NbC/h-BN self-lubricating coatings, Surf. Coat. Technol. 372 (2019) 218–228.
[141] H. Yan, P. Zhang, Q. Gao, Y. Qin, R. Li, Laser cladding Ni-based alloy/nano-Ni encapsulated h-BN self-lubricating composite coatings, Surf. Coat. Technol. 332 (2017) 422–427.
[142] J. Tharajak, T. Palathai, N. Sombatsompop, Recommendations for h-BN loading and service temperature to achieve low friction coefficient and wear rate for thermal-sprayed PEEK coatings, Surf. Coat. Technol. 321 (2017) 477–483.
[143] Y. Zhao, Y. Wang, Z. Yu, M. Planche, F. Peyraut, H. Liao, A. Lasalle, A. Allimant, G. Montavon, Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating, J. Eur. Ceram. Soc. 38 (2018) 4512–4522.
[144] K. Liu, H. Yan, P. Zhang, J. Zhao, Z. Yu, Q. Lu, Wear behaviors of TiN/WS2 + hBN/NiCrBSi self-lubricating composite coatings on TC4 alloy by laser cladding, Coatings, 10 (2020) 747-759.
[145] X.L. Lu, X.B. Liu, P.C. Yu, S.J. Qiao, Y.J. Zhai, M.D. Wang, Y. Chen, D. Xu, Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding, Opt. Laser Technol. 78 (2016) 87–94.
[146] D. Misra, V. Nemane, S. Mukhopadhyay, S. Chatterjee, Effect of hBN and SiC addition on laser assisted processing of ceramic matrix composite coatings, Ceram. Int. 46 (2020) 9758-9764.
[147] Y. Zhao, K. Feng, C. Yao, P. Nie, J. Huang, Z. Li, Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-cu and h-BN solid lubricants, Surf. Coat. Technol. 359 (2019) 485–494.
[148] V. Kumar, R. Rakshit, A.K. Das, Mechanical and tribological performance of fiber laser cladded h-BN + SS316 composite on SS316 surface, J. Mater. Process. Technol. 278 (2020) 116509.
[149] P. Srisungsitthisunti, S. Mahathanabodee, Surface modification on AISI 316L stainless steels by nanosecond laser with boron nitride powders, Mater. Today. 5 (2018) 9461-9466.
[150] M. Hussain, V. Mandal, P.K Singh, P. Kumar, V. Kumar, A.K. Das, Experimental study of microstructure, mechanical and tribological properties of cBN particulates SS316 alloy based MMCs fabricated by DMLS technique, J. Mech. Sci. Technol. 31 (2017) 2729-2737.