Status and Trends in Fusion-Based Surface Modification Techniques for Self-Lubricating High Temperature Properties in Austenitic Stainless Steel Using Refractories

Article Preview

Abstract:

This paper conducted extensive review of extant literature on fusion-based technique for surface modification of austenitic stainless steel AISI 304 grade (304SS) for high temperature self-lubricating application using refractory carbides. Careful systematic review of available literature indicates that among the families of refractory carbides, only silicon carbide (SiC) and titanium carbide (TiC) were successfully adsorbed on the surface of 304SS via fusion melting techniques with TiC having more documentation. Yet, this information was limited to ambient temperature properties of the TiC coatings as such high temperature properties as creep-fatigue, thermal stability, hot corrosion and oxidation were not reported. Additionally, information on the incorporation of hexagonal boron nitride (hBN) into TiC coatings to address the high temperature self-lubricating challenges associated with the alloy was not available. Further, literature is scarce on multi-layer longitudinal and transverse coatings to address the challenges inherent with single layer coating. The review established that there is a wide gap in both knowledge and practice in the deposition of self-lubricating high temperature properties in 304SS substrate material using fusion-based technique which offers a window for research exploration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-43

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S. Was, S. Ukai, Austenitic stainless steels, in: G.R. Odette, S.J. Zinkle (Eds.),Structural alloys for nuclear energy applications. Elsevier, Amsterdam, Netherlands, 2019, pp.293-347.

DOI: 10.1016/b978-0-12-397046-6.00008-3

Google Scholar

[2] M. Heczko, B.D. Esser, T.M. Smith, P. Beran, V.Mazánová, D.W. McComb, T. Kruml, J. Polák, M.J. Mills, Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel, Mater. Sci. Eng. A. 719 (2018) 49-60.

DOI: 10.1016/j.msea.2018.02.004

Google Scholar

[3] Information on http://www.grandviewresearch.com

Google Scholar

[4] M. Corradi, A. Di Schino, A. Borri, R. Rufini, A review of the use of stainless steel for masonry repair and reinforcement, Constr. Build. Mater, 181 (2018) 335-346.

DOI: 10.1016/j.conbuildmat.2018.06.034

Google Scholar

[5] H. K. D. H. Bhadeshia, R. Honeycombe, Steels: microstructure and properties, Forth ed., Butterworths-Heinemann, Elsevier, Oxford, 2017.

Google Scholar

[6] Y. S. Ji, J. Park, S. Y. Lee, J. W. Kim, S. M. Lee, J. Nam, J. Nam, B. Hwang, J.Y. Suh, J. H. Shim, Long-term evolution of σ phase in 304H austenitic stainless steel: Experimental and computational investigation. Mater. Charact. 128 (2017) 23-29.

DOI: 10.1016/j.matchar.2017.03.030

Google Scholar

[7] C.S. Ouyang, X.B. Liu, Y.S. Luo, J. Liang, M. Wang, D. Chene, Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on 304 stainless steel, J.Mater.Res.Technol, 9 (2020) 7034-7046.

DOI: 10.1016/j.jmrt.2020.05.008

Google Scholar

[8] R.K. Desu, H.N. Krishnamurthy, A. Balu, A.K. Gupta, S.K. Singh, Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures, J. Mater.Res. Technol. 5 (2016) 13-20.

DOI: 10.1016/j.jmrt.2015.04.001

Google Scholar

[9] M. Calmunger, R. Eriksson, G. Chai, S. Johansson, J. Moverare, Surface phase transformation in austenitic stainless steel induced by cyclic oxidation in humidified air, Corros. Sci. 100 (2015) 524-534.

DOI: 10.1016/j.corsci.2015.08.030

Google Scholar

[10] A. Perron, C. Toffolon-Masclet, X. Ledoux, F. Buy, T. Guilbert, S. Urvoy, S. Bosonnet, B. Marini, F. Cortial, G. Texier, C. Harder, V. Vignal, P.H. Petit, J. Farré, E. Suzona, Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations, Acta Mater. 79 (2014) 16-29.

DOI: 10.1016/j.actamat.2014.06.066

Google Scholar

[11] M. M. Kumari, S. Natarajan, J. Alphonsa, Dry sliding wear behaviour of plasma nitrocarburised AISI 304 stainless steel using response surface methodology, Surf. Eng. 26 (2010)191–198.

DOI: 10.1179/174329409x439041

Google Scholar

[12] L. Huang, Micromechanical simulation and experimental investigation of the creep damage of stainless austenitic steels, Pierre and Marie Curie University, Paris, 2017.

Google Scholar

[13] C.K. Sahoo, L. Soni, M. Masanta, Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process, Surf. Coat. Technol. 307: 17–27

DOI: 10.1016/j.surfcoat.2016.08.056

Google Scholar

[14] L. Song, G. Zeng, H. Xiao, X. Xiao, S. Li, Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders. J. Manuf. Process. 24 (2016) 116–124.

DOI: 10.1016/j.jmapro.2016.08.004

Google Scholar

[15] S. Buytoz, M. Ulutan, In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying. Surf. Coat. Technol. 200 (2006) 3698-3704.

DOI: 10.1016/j.surfcoat.2005.02.178

Google Scholar

[16] H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew, Elsevier, USA, 1996.

Google Scholar

[17] T. Yamaguchi, H. Hagino, Formation of a titanium-carbide-dispersed hard coating on austenitic stainless steel by laser alloying with a light-transmitting resin, Vacuum, 155 (2018) 23–28.

DOI: 10.1016/j.vacuum.2018.05.050

Google Scholar

[18] E.R.I. Mahmoud, Characterizations of 304 stainless steel laser cladded with titanium carbide particles, Adv. Produc. Eng. Manag.10 (2015) 115–124.

DOI: 10.14743/apem2015.3.196

Google Scholar

[19] E.R.I. Mahmoud, Microstructure, wear and corrosion characteristics of 304 stainless steel laser cladded with titanium carbide, Int. J. Eng. Tech. Mgmt. Res. 4 (2015) 422-427.

Google Scholar

[20] K. Ushashri, M. Masanta, Hard TiC coating on AISI304 steel by laser surface engineering using pulse Nd:YAG laser. Materials and Manufacturing processes, 30(2015) 730-735.

DOI: 10.1080/10426914.2014.973593

Google Scholar

[21] J. Gasia, L. Miró, L.F Cabeza, Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. Renew. Sustain. Energy Rev. 75 (2017) 1320-1338.

DOI: 10.1016/j.rser.2016.11.119

Google Scholar

[22] C.A.C. Sequeira, L. Amaral, Strengthening mechanisms of materials for high temperature application, Corros. Protec. Mater. 32 (2013) 75-81.

Google Scholar

[23] X.L. Lu, X.B. Liu, P.C. Yu, Y. Chen, G.L. Shi, S.H. Wu, D. Xu, Effect of post heat treatment on the microstructure and tribological properties of 304 stainless steel laser cladding Ni60/h-BN self-lubricating and wear-resistant composite coating, J. Tribol. 36 (2016) 48-54.

DOI: 10.1016/j.apsusc.2015.07.138

Google Scholar

[24] K.A. Bello, M.A. Maleque, Z. Ahmad, A.A. Adebisi, S. Mirdha, Preparation and characterization of TIG-alloyed hybrid composite coatings for high temperature solid lubrication, Proc. Mal. Int. Tribol. Conf. 3 (2015) 265-267.

Google Scholar

[25] X.L. Lu, X.B. Liu, P.G. Yu, Y.J. Zhai, S.J. Qiao, M.D. Wang, Y.G. Wang, Y. Chen, Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding. Appl. Surf. Sci. 355 (2015) 350–358.

DOI: 10.1016/j.apsusc.2015.07.138

Google Scholar

[26] T. Sunil, M. Sandeep, R. Kumaraswami, A. Shravan, A critical review on solid lubricants, Int. J. Mech. Eng. Technol. 7 (2016) 193–199.

Google Scholar

[27] S. Zhu, J. Cheng, Z. Qiao, J. Yang, High temperature solid-lubricating materials: A review. Tribol. Int. 133 (2019) 206–223.

DOI: 10.1016/j.triboint.2018.12.037

Google Scholar

[28] Y. Zhang, R.R. Chromik, Tribology of Self-Lubricating Metal Matrix Composites, In: P.L. Menezes, P.K. Rohatgi, E. Omrani, (Eds.), Self-Lubricating Composites. Springer, Berlin, Heidelberg, 2018, pp.33-73.

DOI: 10.1007/978-3-662-56528-5_2

Google Scholar

[29] V. Sudarsan, Materials for hostile chemical environments, In: A.K. Tyagi, S. Banerjee, (Eds.), Materials Under Extreme Conditions-Recent Trends and Future Prospects. Elsevier. Amsterdam, Netherlands, 2017, pp.129-158.

DOI: 10.1016/b978-0-12-801300-7.00004-8

Google Scholar

[30] X. Duan, Z. Yang, L. Chen, Z. Tian, D. Cai, Y. Wang, D. Jia, Y. Zhou, Review on the properties of hexagonal boron nitride matrix composite ceramics. J. Eur. Ceram. 36 (2016) 3725-3737.

DOI: 10.1016/j.jeurceramsoc.2016.05.007

Google Scholar

[31] A. Toudehdehghan, J.W. Lim, K.E. Foo, M.I.N. Ma'arof, J. Mathews, A brief review of functionally graded materials. In: MATEC Web Conferences. EDP Sciences, 2017, 131.

DOI: 10.1051/matecconf/201713103010

Google Scholar

[32] S. Mridha, T.N. Baker, Overlapping tracks processed by TIG melting TiC preplaced powder on low alloy steel surfaces, Mater. Sci. Technol. 31(2015) 337-343.

DOI: 10.1179/1743284714y.0000000530

Google Scholar

[33] S. Mridha, A.N. Md Idriss, M.A. Maleque, I.I. Yaacob, T.N. Baker, Melting of multipass surface tracks in steel incorporating titanium carbide powders, Mater. Sci. Technol. 31(2015) 1362-1369.

DOI: 10.1179/1743284714y.0000000712

Google Scholar

[34] K.A. Kuptsov, A.N. Sheveyko, O.S. Manakova, D.A. Sidorenko, D.V. Shtansky, Comparative investigation of single-layer and multilayer Nb-doped TiC coatings deposited by pulsed vacuum deposition techniques, Surf. Coat. Technol. 385(2020) 125422.

DOI: 10.1016/j.surfcoat.2020.125422

Google Scholar

[35] M. Naebe, K. Shirvanimoghaddam, Functionally graded materials: A review of fabrication and properties, Appl. Mater. Today, 5 (2016) 223–245.

DOI: 10.1016/j.apmt.2016.10.001

Google Scholar

[36] R.G. Bohatch, K. Graf, A. Scheid, Effect of track overlap on the microstructure and properties of the CoCrMoSi PTA coatings. Mater. Res. 18 (2015) 553-562.

DOI: 10.1590/1516-1439.340014

Google Scholar

[37] L. Wang, S. Xing, H. Liu, C. Jiang, V. Ji, Improved wear properties of Ni Ti nanocomposite coating with tailored spatial microstructures by extra adding CeO2 nanoparticles, Surf. Coat. Technol. 399 (2020) 126119.

DOI: 10.1016/j.surfcoat.2020.126119

Google Scholar

[38] L. Wang, J. Sun, B. Kang, S. Li, S. Ji, Z. Wen, X. Wang, Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate, J. Power Sources, 246 (2014) 775-782.

DOI: 10.1016/j.jpowsour.2013.08.025

Google Scholar

[39] Z. Zhang, T. Yu, R. Kovacevic, . Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC, Appl. Surf. Sci. 410 (2017) 225–240.

DOI: 10.1016/j.apsusc.2017.03.137

Google Scholar

[40] Q. Wang, S. Zhang, C. Zhang, C. Wu, J. Wang, J. Chen, Z. Sun, Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing, Vacuum. 141 (2017) 68-81.

DOI: 10.1016/j.vacuum.2017.03.021

Google Scholar

[41] D. Kotoban, A. Aramov, T. Tarasova, Possibility of multi-material laser cladding fabrication of nickel alloy and stainless steel, Phys. Procedia, 83 (2016) 634-646.

DOI: 10.1016/j.phpro.2016.08.066

Google Scholar

[42] H.F. Rafi, N.V. Karthik, H. Gong, T.L. Starr, B.E. Stucker, Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting, J. Mater. Eng. Perform. 22 (2013) 3872–83.

DOI: 10.1007/s11665-013-0658-0

Google Scholar

[43] N.P. Gokhale, P. Kala, V. Sharma, Thin-walled metal deposition with GTAW welding-based additive manufacturing process, J. Braz. Soc. Mech. Sci. Eng. 41(2019) 569.

DOI: 10.1007/s40430-019-2078-z

Google Scholar

[44] L. Quintino, Overview of coating technologies, In: R. Miranda (Eds.), Surface Modification by Solid State Processing. Woodhead Publishing, Elsevier, USA, 2014, pp.1-24.

DOI: 10.1533/9780857094698.1

Google Scholar

[45] S. Kumar, P.K. Ghosh, R. Kumar, Surface modification of AISI 4340 steel by multi-pass TIG arcing process, J. Mater. Process. Technol. 249 (2017) 394–406.

DOI: 10.1016/j.jmatprotec.2017.06.035

Google Scholar

[46] R.M. Farias, P.R.F. Teixeira, L.O. Vilarinho, An efficient computational approach for heat source optimization in numerical simulations of arc welding processes, J. Constr. Steel Res. 176 (2021) 106382.

DOI: 10.1016/j.jcsr.2020.106382

Google Scholar

[47] A. Kumar, T. DebRoy, Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions, Metall. Mater. Trans. A. 38 (2007) 506–519.

DOI: 10.1007/s11661-006-9083-4

Google Scholar

[48] S. Bag, A. Trivedi, A. De, Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source, Int. J. Therm. Sci. 48 (2009) 1923-1931.

DOI: 10.1016/j.ijthermalsci.2009.02.010

Google Scholar

[49] P. Podrzaj, An overview of arc welding control systems, Prog. Electr. Electron. Eng. 1 (2019) 871-871.

Google Scholar

[50] J.H. Abboud, K.Y. Benyounis, H. Julifkar, M.S.J. Hashmi, Material response with high power laser in surface treatment of ferrous alloys. In: Reference Module in Materials Science and Materials Engineering. Elsevier, Oxford, UK, 2017, 1-12

DOI: 10.1016/b978-0-12-803581-8.04173-4

Google Scholar

[51] R.S. Ningthoujam, Synthesis and characterization of borides, carbides, and nitrides and their applications, In: A.K. Tyagi, S. Banerjee (Eds.), Materials Under Extreme Conditions- Recent Trends and Future Prospects. Elsevier, USA, 2017, pp.337-375.

DOI: 10.1016/b978-0-12-801300-7.00010-3

Google Scholar

[52] R. Mishra, R.S. Ningthoujam, High-temperature ceramics, In: A.K. Tyagi, S. Banerjee (Eds.), Materials Under Extreme Conditions-Recent Trends and Future Prospects. Elsevier. Amsterdam, Netherlands, 2017, pp.377-409.

DOI: 10.1016/b978-0-12-801300-7.00011-5

Google Scholar

[53] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, Boron carbide: structure, properties, and stability under stress, J. Am. Ceram. Soc. 94 (2011) 3605–3628.

DOI: 10.1111/j.1551-2916.2011.04865.x

Google Scholar

[54] K.Y. Xie, V. Domnich, L. Farbaniec, B. Chen, K. Kuwelkar, L. Ma, J.W. McCauley, R.A. Haber, K.T. Ramesh, M. Chen, K.J. Hemker, Microstructural characterization of boron-rich boron carbide, Acta Mater. 136 (2017) 202-214.

DOI: 10.1016/j.actamat.2017.06.063

Google Scholar

[55] Y. Sun, Q. Meng, M. Qian, B. Liu, K. Gao, Y. Ma, M. Wen, W. Zheng, Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles, Sci. Rep. 6 (2016) 20198.

DOI: 10.1038/srep20198

Google Scholar

[56] H. Hu, J. Kong, Improved thermal performance of diamond-copper composites with boron carbide coating, J. Mater. Eng. Perform. 23 (2014) 651–657.

DOI: 10.1007/s11665-013-0780-z

Google Scholar

[57] A.M. Engwall, L.B. Bayu Aji, S.J. Shin, P.B. Mirkarimi, J.H. Bae, S.O. Kucheyev, Sputter-deposited low-stress boron carbide films, J. Appl. Phys. 128 (2020) 1-9.

DOI: 10.1063/5.0022191

Google Scholar

[58] H. Zhu, Y. Niu, C. Lin, L. Huang, H. Ji, X. Zheng, Fabrication and tribological evaluation of vacuum plasma-sprayed B4C coating, J. Therm. Spray Technol. 21 (2012) 1216–1223.

DOI: 10.1007/s11666-012-9815-5

Google Scholar

[59] J.D. Majumdar, B.R. Chandra, A.K. Nath, I. Manna, Laser composite surfacing of stainless steel with SiC, Phys. Status Solidi A, 203 (2006) 2260–2265.

DOI: 10.1002/pssa.200566021

Google Scholar

[60] A. Kumar, A.K. Das, Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304 stainless steel, Eng. Sci. Technol. Int. J. 24 (2021) 591-604.

DOI: 10.1016/j.jestch.2020.10.001

Google Scholar

[61] Kumar, A.K. Das, Mechanical properties of Fe+SiC metal matrix composite fabricated on stainless steel 304 by TIG coating process, Int. J. Mater. Eng. Innov. 11(2020) 181–197.

DOI: 10.1504/ijmatei.2020.108880

Google Scholar

[62] Kumar, R.K. Ram, A.K. Das, Mechanical characteristics of Ti-SiC metal matrix composite coating on AISI 304 steel by gas tungsten arc (GTA) coating process, Mater. Today, 17 (2019) 111–117.

DOI: 10.1016/j.matpr.2019.06.407

Google Scholar

[63] N. Barnes, S. Clark, S. Seetharaman, P.F. Mendez, Growth mechanism of primary needles during the solidification of chromium carbide overlays, Acta Mater. 151 (2018) 356-365.

DOI: 10.1016/j.actamat.2018.03.050

Google Scholar

[64] H.C. Wang, H.H. Sheu, C.E. Lu, K.H. Hou, M.D. Ger, Preparation of corrosion-resistant and conductive trivalent Cr–C coatings on 304 stainless steel for use as bipolar plates in proton exchange membrane fuel cells by electrodeposition, J. Power Sources. 293 (2015) 475-483.

DOI: 10.1016/j.jpowsour.2015.05.105

Google Scholar

[65] H.C. Wang, K.H. Hou, C.E. Lu, M.D. Ger, The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells, Thin Solid Films, 570 (2014) 209-214.

DOI: 10.1016/j.tsf.2014.03.034

Google Scholar

[66] C.E. Lu, N.W. Pu, K.H. Hou, C.C. Tseng, M.D. Ger, The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium, Appl. Surf. Sci. 282 (2013) 544-551.

DOI: 10.1016/j.apsusc.2013.06.008

Google Scholar

[67] V.S. Protsenko, V.O. Gordiienko, F.L. Danilov, Unusual chemical mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath, Electrochem. Commun. 17 (2012) 85-87.

DOI: 10.1016/j.elecom.2012.02.013

Google Scholar

[68] A. Ghadi, M. Soltanieh, H. Saghafian, Z.G. Yang, Investigation of chromium and vanadium carbide composite coatings on CK45 steel by thermal reactive diffusion, Surf. Coat. Technol. 289 (2016) 1-10.

DOI: 10.1016/j.surfcoat.2016.01.048

Google Scholar

[69] D.D.L. Chung, Carbon-matrix composites: Coating with chromium carbide, In: D.D.L. Chung (Eds.), Carbon Composites- Composites with Carbon Fibers, Nanofibers, and Nanotubes (Second Edition). Butterworth-Heinemann, Elsevier, Oxford, UK, 2017, 387- 466.

DOI: 10.1016/b978-0-12-804459-9.00007-5

Google Scholar

[70] Q. Kang, X. He, S. Ren, L. Zhang, M.W.C. Guo, W. Cui, X. Qu, Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications, Appl. Therm. Eng. 60 (2013) 423-429.

DOI: 10.1016/j.applthermaleng.2013.05.038

Google Scholar

[71] S.E. Aghili, M. Shamanian, Investigation of powder fed laser cladding of NiCr-chromium carbides single-tracks on titanium aluminide substrate, Opt. Laser Technol. 119 (2019) 105652.

DOI: 10.1016/j.optlastec.2019.105652

Google Scholar

[72] S.E. Aghili, M. Shamanian, A.R. Najafabadi, A. Keshavarzkermani, R. Esmaeilizadeh, U. Ali, E. Marzbanrad, E. Toyserkani, . Microstructure and oxidation behaviour of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate, Ceram Int. 46 (2020) 1668-1679.

DOI: 10.1016/j.ceramint.2019.09.139

Google Scholar

[73] L. Wang, Y. Tao, Z. Zhang, Y. Wang, Q. Feng, H. Wang, H. Li, Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 44 (2019) 4940-4950.

DOI: 10.1016/j.ijhydene.2018.12.184

Google Scholar

[74] Z. Zhao, P. Hui, T. Wang, Y. Xu, L. Zhong, M. Zhao, D. Yang, R. Wei, Fabrication of Mo2C coating on molybdenum by contact solid carburization, Appl. Surf. Sci. 462 (2018) 48-54.

DOI: 10.1016/j.apsusc.2018.08.083

Google Scholar

[75] K.B. Kushkhov, F.Y. Kuchmezova, M.N. Adamokova, A.M. Asanov, Electrodeposition of coatings of double carbides of tungsten and molybdenum from tungstate–molybdate–carbonate solutions, Russ. J. Non-Ferr. Met. 57 (2016) 515–520.

DOI: 10.3103/s1067821216050102

Google Scholar

[76] A. Robin, A.F. Sartori, Electrodeposition of molybdenum carbide from molten salts, In: U. S. Mohanty (Eds.), Electrodeposition: Properties, Processes and Applications. Nova Science Publishers, New York, 2012, pp.87-204.

Google Scholar

[77] S. Vimalraj, R. Varahamoorthi, A.U. Bala, R. Karthikeyan, Modeling and optimizing the laser parameters for corrosion resistance in 316 SS laser hardfaced surface using tungsten carbide, Mater. Today. 26 (2020) 2485-2490.

DOI: 10.1016/j.matpr.2020.02.529

Google Scholar

[78] A. Santos, C. Gonzalez, Z.Y. Ramirez, Characterization of tungsten carbide coatings deposited on AISI 1020 steel, J. Phys. Conf. Ser. 786 (2017) 1-7.

DOI: 10.1088/1742-6596/786/1/012011

Google Scholar

[79] P. Zhang, Y. Pang, M. Yu, Effects of WC particle types on the microstructures and properties of WC-reinforced Ni60 composite coatings produced by laser cladding, Metals, 9 (2019) 583-595.

DOI: 10.3390/met9050583

Google Scholar

[80] S. Mohammed, R.S. Rajamure, Z. Zhang, P. Balu, N.B. Dahotre, R. Kovacevic, Tailoring corrosion resistance of laser-cladded Ni/WC surface by adding rare earth elements, Int. J. Adv. Manuf. Technol. 97 (2018) 4043–4054.

DOI: 10.1007/s00170-018-2227-z

Google Scholar

[81] K.M. Wang, H.G. Fu, Y.P. Lei, Y.W. Yang, Q.T. Li, Z.Q. Su, Microstructure and property of Ni60A/WC composite coating fabricated by fiber laser cladding, Materwiss. Werksttech, 46 (2015) 1177–1184.

DOI: 10.1002/mawe.201500448

Google Scholar

[82] P. Farahmand, T. Frosell, M. McGregor, R. Kovacevic, Comparative study of the slurry erosion behavior of laser cladded Ni-WC coating modified by nanocrystalline WC and La2O3, Int. J. Adv. Manuf. Technol. 79 (2015) 1607–1621.

DOI: 10.1007/s00170-015-6936-2

Google Scholar

[83] Li, Q. Zhang, F. Wang, P. Deng, Q. Lu, Y. Zhang, S. Li, P. Ma, W. Li, Y. Wang, Microstructure and wear behaviors of WC-Ni coatings fabricated by laser cladding under high frequency micro-vibration, Appl. Surf. Sci. 485 (2019) 513–519.

DOI: 10.1016/j.apsusc.2019.04.245

Google Scholar

[84] X. Tong, F.H. Li, M. Kuang, M.Y. Ma, X.C. Chen, M. Liu, Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel, Appl. Surf. Sci. 258 (2012) 3214–3220.

DOI: 10.1016/j.apsusc.2011.11.066

Google Scholar

[85] X. Huang, J. Zhang, Y. Cheng, C. Chen, G. Lian, J. Jiang, M. Feng, M. Zhou, Effect of h-BN addition on the microstructure characteristics, residual stress and tribological behavior of WC-reinforced Ni-based composite coatings, Surf. Coat. Technol. 405 (2021) 126534.

DOI: 10.1016/j.surfcoat.2020.126534

Google Scholar

[86] A. Chakraborty, S. Pityana, J.D. Majumdar, Laser surface alloying of AISI 304 stainless steel with WC+Co+NiCr for improving wear resistance, Procedia Manuf. 7 (2017) 8–14.

DOI: 10.1016/j.promfg.2016.12.006

Google Scholar

[87] C. Li, S. Li, C. Liu, Y. Zhang, P. Deng, Y. Guo, J. Wang, Y. Wang, Effect of WC addition on microstructure and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying, Mater. Chem. Phys. 234 (2019) 9–15.

DOI: 10.1016/j.matchemphys.2019.05.089

Google Scholar

[88] A. Chakraborty, J.K. Singh, D. Sen, S. Pityana, I. Manna, S. Krishna, J.D. Majumdar, . Microstructures, wear and corrosion resistance of laser composite surfaced austenitic stainless steel (AISI 304 SS) with tungsten carbide, Opt. Laser Technol. 134 (2021) 106585.

DOI: 10.1016/j.optlastec.2020.106585

Google Scholar

[89] S. Anandan, S. Pityana, J.D. Majumdar, Structure-property-correlation in laser surface alloyed AISI 304 stainless steel with WC+Ni+NiCr, Mater. Sci. Eng. A, 536 (2012) 159-169.

DOI: 10.1016/j.msea.2011.12.095

Google Scholar

[90] R. Singh, M. Kumar, D. Kumar, S.K. Mishra, Erosion and corrosion behavior of laser cladded stainless steels with tungsten carbide, J. Mater. Eng. Perform. 21 (2012) 2274–2282.

DOI: 10.1007/s11665-012-0170-y

Google Scholar

[91] Jalaly, F.J. Gotor, M.J. Sayagués, Mechanochemical combustion synthesis of vanadium carbide (VC), niobium carbide (NbC) and tantalum carbide (TaC) nanoparticles, Int. J. Refract. Met. Hard Mater. 79 (2019) 177-184.

DOI: 10.1016/j.ijrmhm.2018.12.011

Google Scholar

[92] N.K. Paraye, P.K. Ghosh, S. Das, A novel approach to synthesize surface composite by in-situ grown VC reinforcement in steel matrix via TIG arcing, Surf. Coat. Technol. 399 (2020) 126129.

DOI: 10.1016/j.surfcoat.2020.126129

Google Scholar

[93] R. Soltani, M.H. Sohi, M. Ansari, A. Haghighi, H.M. Ghasemi, F. Haftlang, Evaluation of niobium carbide coatings produced on AISI L2 steel via thermo-reactive diffusion technique, Vacuum, 146 (2017) 44-51.

DOI: 10.1016/j.vacuum.2017.09.023

Google Scholar

[94] F.A.P. Fernandes, J. Gallego, C.A. Picon, T.G. Filho, L.C. Casteletti, Wear and corrosion of niobium carbide coated AISI 52100 bearing steel, Surf. Coat. Technol. 279 (2015) 112-117.

DOI: 10.1016/j.surfcoat.2015.08.036

Google Scholar

[95] A.G. Orjuela, R. Rincón, J.J. Olaya, Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition, Surf. Coat. Technol. 259 (2014) 667-675.

DOI: 10.1016/j.surfcoat.2014.10.012

Google Scholar

[96] H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene), Adv. Mater. 30 (2018) 1703284.

Google Scholar

[97] S. Du, K. Zhang, M. Wen, Y. Qin, R. Li, H. Jin, X. Bao, P. Ren, W. Zheng, Optimizing the tribological behavior of tantalum carbide coating for the bearing in total hip joint replacement, Vacuum, 150 (2018) 222-231.

DOI: 10.1016/j.vacuum.2018.01.050

Google Scholar

[98] M.M. Esmaeili, M. Mahmoodi, R. Imani, Tantalum carbide coating on Ti-6Al-4V by electron beam physical vapor deposition method: Study of corrosion and biocompatibility behavior, Int. J. Appl. Ceram. Technol. 17 (2017) 1–9.

DOI: 10.1111/ijac.12658

Google Scholar

[99] Ferro, J.V. Rau, V.R. Albertini, A. Generosi, R. Teghil, S.M. Barinov, Pulsed laser deposited hard TiC, ZrC, HfC and TaC films on titanium:Hardness and an energy-dispersive X-ray diffraction study, Surf. Coat. Technol. 202 (2008) 1455–1461.

DOI: 10.1016/j.surfcoat.2007.06.060

Google Scholar

[100] E.J. Wuchina, M. Opeka, The Group IV carbides and nitrides, In: W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou (Eds.), Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications. John Wiley and Sons, New Jersey, USA, 2014, pp.361-390.

DOI: 10.1002/9781118700853.ch14

Google Scholar

[101] Matović, B. Babić, D. Bučevac, M. Čebela, V. Maksimović, J. Pantić, M. Miljković, Synthesis and characterization of hafnium carbide fine powders, Ceram. Int. 39 (2013) 719-723.

DOI: 10.1016/j.ceramint.2012.06.083

Google Scholar

[102] H.O. Pierson, Handbook of chemical vapor deposition (CVD): principles, technology, and applications, William Andrew, Elsevier, USA, 2012.

Google Scholar

[103] Tallo, T. Thomberg, H. Kurig, K. Kontturi, A. Jänes, E. Lust, Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide, Carbon, 67 (2014) 607-616.

DOI: 10.1016/j.carbon.2013.10.034

Google Scholar

[104] H.I. Yoo, H.S. Kim, B.G. Hong, I.C. Sihn, K.H. Lim, B.J. Lim, S.Y. Moon, Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a vacuum plasma spray coating method, J. Eur.Ceram. 36 (2016) 1581-1587.

DOI: 10.1016/j.jeurceramsoc.2016.01.032

Google Scholar

[105] Kim, J. Han, C. Park, H.G. Lee, J.Y. Park, W.J. Kim, Chemical vapor deposition of dense hafnium carbide from HfCl4–C3H6–H2 system for the protection of carbon fibers, Adv. Eng. Mater. 21(2019) 1-7.

DOI: 10.1002/adem.201800730

Google Scholar

[106] J. Ren, Y. Zhang, J. Li, S. Tian, T. Fei, H. Li, Effects of deposition temperature and time on HfC nanowires synthesized by CVD on SiC-coated C/C composites, Ceram. Int. 42 (2016) 5623-5628.

DOI: 10.1016/j.ceramint.2015.12.078

Google Scholar

[107] K. Hans, S. Latha, P. Bera, H.C. Barshilia, Hafnium carbide based solar absorber coatings with high spectral selectivity, Sol. Energy Mater. Sol. Cells, 185 (2018) 1-7.

DOI: 10.1016/j.solmat.2018.05.005

Google Scholar

[108] Verdon, O. Szwedek, A. Allemand, S. Jacques, Y. Le Petitcorps, P. David, High temperature oxidation of two- and three-dimensional hafnium carbide and silicon carbide coatings, J. Eur. Ceram. Soc. 34 (2014) 879–887.

DOI: 10.1016/j.jeurceramsoc.2013.10.019

Google Scholar

[109] H.F. Jackson, W.E. Lee, Properties and characteristics of ZrC, Compr. Nucl. Mater. 2 (2012) 339–372.

Google Scholar

[110] Q. Liu, L. Zhang, L. Cheng, L. Wang, Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition, J. Coat. Technol. Res. 6 (2009) 269–273.

DOI: 10.1007/s11998-008-9117-5

Google Scholar

[111] Y. Wang, Q. Liu, J. Liu, L. Zhang, L. Cheng, Deposition mechanism for chemical vapor deposition of zirconium carbide coatings, J. Am. Ceram. Soc. 91(2008) 1249–1252.

DOI: 10.1111/j.1551-2916.2007.02253.x

Google Scholar

[112] Liu, B. Liu, Y. Shao, Z. Li, C. Tang, Preparation and characterization of zirconium carbide coating on coated fuel particles, J. Am. Ceram. Soc. 90 (2007) 3690–3693.

DOI: 10.1111/j.1551-2916.2007.01965.x

Google Scholar

[113] J. Xu, Z.Y. Li, S. Xu, P. Munroe, Z.H. Xie, A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application, J. Power Sources. 297 (2015) 359-369.

DOI: 10.1016/j.jpowsour.2015.08.024

Google Scholar

[114] V.V. Chayeuski, V.V. Zhylinski, P.V. Rudak, D.P. Rusalsky, N. Višniakov, O. Černašėjus, Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool, Appl. Surf. Sci. 446 (2018) 18-26.

DOI: 10.1016/j.apsusc.2018.02.239

Google Scholar

[115] N. Shabrina, B. Sugeng, D.N. Haerani, A.K. Rivai, Preliminary study of zirconium carbide ceramic deposition on austenitic stainless steel by pulsed laser deposition, IOP Conf. Ser. Mater. Sci. Eng. 924 (2020) 1-5.

DOI: 10.1088/1757-899x/924/1/012023

Google Scholar

[116] Y.F. Liu, J.S. Mu, X.Y. Xu, S.Z. Yang, Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process, Mater. Sci. Eng. A, 458 (2007) 366-370.

DOI: 10.1016/j.msea.2006.12.086

Google Scholar

[117] G.V. Galevsky, V.V. Rudneva, A.K. Garbuzova, D.V. Valuev, Titanium carbide: nanotechnology, properties, application, IOP Conf. Ser. Mater. Sci. Eng. 91 (2015) 012017.

DOI: 10.1088/1757-899x/91/1/012017

Google Scholar

[118] E.R.I. Mahmoud, H.F. El-Labban, Laser surface cladding of high C-Cr bearing tool steel with TiC powders, IUP J. Mech. Eng. 7 (2014) 67-79.

Google Scholar

[119] S. Wang, Y. Li, J. Wang, T. Luo, K. Zheng, Z. Zheng, J. Long, Y. Lin, Study on the microstructure and properties of iron-based composites locally reinforced by in-situ submicron TiC particles, Mater. Chem. Phys. 287 (2022) 126376.

DOI: 10.1016/j.matchemphys.2022.126376

Google Scholar

[120] M.T. Hosseinnejad, Z. Ghorannevis, M. Ghoranneviss, M. Soltanveisi, M. Shirazi, Preparation of titanium carbide thin film using plasma focus device, J. Fusion Energy. 30 (2011) 516–522.

DOI: 10.1007/s10894-011-9422-3

Google Scholar

[121] Z. Jiao, S. Peterkin, L. Felix, R. Liang, J.P. Oliveira, N. Schell, N. Scotchmen, E. Toyserkani, Y. Zhou, Surface modification of 304 stainless steel by electro-spark deposition, J. Mater. Eng. Perform. 27 (2018) 4799–4809.

DOI: 10.1007/s11665-018-3579-0

Google Scholar

[122] D.M. Devia, E. Restrepo-Parra, P.J. Arango, Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique, Appl. Surf. Sci. 258 (2011) 1164-1174.

DOI: 10.1016/j.apsusc.2012.01.077

Google Scholar

[123] S. Saroj, C.K. Sahoo, M. Masanta, Microstructure and mechanical performance of TiC-Inconel825 composite coating deposited on AISI 304 steel by TIG cladding process, J. Mater. Process. Technol. 249 (2017) 490–501.

DOI: 10.1016/j.jmatprotec.2017.06.042

Google Scholar

[124] S. Saroj, C.K. Sahoo, D. Tijo, M. Masanta, Sliding abrasive wear characteristic of TIG cladded TiC reinforced Inconel825 composite coating, Int. J. Refract. Met. Hard Mater. 69 (2017) 119–130.

DOI: 10.1016/j.ijrmhm.2017.08.005

Google Scholar

[125] C.K. Sahoo, M. Masanta, Microstructure and mechanical properties of TiC-Ni coating onAISI304 steel produced by TIG cladding process, J. Mater. Process. Technol. 240 (2017a) 126–137.

DOI: 10.1016/j.jmatprotec.2016.09.018

Google Scholar

[126] C.K. Sahoo, M. Masanta, Microstructure and tribological behaviour of TiC-Ni-CaF2 composite coating produced by TIG cladding process, J. Mater. Process. Technol. 243 (2017b) 229–245.

DOI: 10.1016/j.jmatprotec.2016.12.028

Google Scholar

[127] C.K. Sahoo, M. Masanta, Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering process, Opt. Lasers Eng. 67 (2015) 36–48.

DOI: 10.1016/j.optlaseng.2014.10.010

Google Scholar

[128] B. Heidarshenas, G. Hussain, M.B.A. Asmael, Development of a TiC/Cr23C6 composite coating on a 304 stainless steel substrate through a tungsten inert gas process, Coatings, 7 (2017) 1-11.

DOI: 10.3390/coatings7060080

Google Scholar

[129] P. Hugh, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Noyes Publications, New Jersey, USA, 1996.

Google Scholar

[130] H. Singh, K.C. Mutyala, R.D. Evans, G.L. Doll, An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments, Surf. Coat. Technol, 284 (2015) 281-289.

DOI: 10.1016/j.surfcoat.2015.05.049

Google Scholar

[131] J.M. Andrew, Solid lubricants, Tribol. Lubr. Technol. 75 (2019) 24-30.

Google Scholar

[132] G.A. Zhang, L.P. Wang, Self-Lubricating Hard/Ultra-Hard Coatings, Encyclopedia of Tribology, Springer, USA, 2013, pp.3018-3025.

DOI: 10.1007/978-0-387-92897-5_1254

Google Scholar

[133] W. Zhao, Solid-Like Lubricating Films, Ionic Liquid Films. In: Encyclopedia of Tribology. Springer, USA, 2013. pp.227-234.

DOI: 10.1007/978-0-387-92897-5_1247

Google Scholar

[134] W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th ed., CRC Press, Florida, 2016.

Google Scholar

[135] W. Pan, S. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, Low thermal conductivity oxides, MRS Bull. 37 (2012) 917-922.

DOI: 10.1557/mrs.2012.234

Google Scholar

[136] J. Qiu, A. Wu, Y. Li, Y. Xu, R. Scarlat, D.D. Macdonald, Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt, Corros. Sci. 170 (2020) 108677.

DOI: 10.1016/j.corsci.2020.108677

Google Scholar

[137] Q. Liu, H. Sun, H. Yin, L. Guo, J. Qiu, J. Lin, Z. Tang, Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles, Corros. Sci. 160 (2019) 108174

DOI: 10.1016/j.corsci.2019.108174

Google Scholar

[138] H. Ju, R. Wang, N. Ding, L. Yu, J. Xu, F. Ahmed, B. Zuo, Y. Geng, Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen, Mater. Des. 186 (2020) 108300.

DOI: 10.1016/j.matdes.2019.108300

Google Scholar

[139] S.N. Perevislov, Structure, properties, and applications of graphite-like hexagonal boron nitride, Refract. Ind. Ceram. 60 (2019) 291–295.

DOI: 10.1007/s11148-019-00355-5

Google Scholar

[140] Z. Chen, H. Yan, P. Zhang, Z. Yu, Q. Lu, J. Guo, Microstructural evolution and wear behaviors of laser-clad Stellite 6/NbC/h-BN self-lubricating coatings, Surf. Coat. Technol. 372 (2019) 218–228.

DOI: 10.1016/j.surfcoat.2019.04.083

Google Scholar

[141] H. Yan, P. Zhang, Q. Gao, Y. Qin, R. Li, Laser cladding Ni-based alloy/nano-Ni encapsulated h-BN self-lubricating composite coatings, Surf. Coat. Technol. 332 (2017) 422–427.

DOI: 10.1016/j.surfcoat.2017.06.079

Google Scholar

[142] J. Tharajak, T. Palathai, N. Sombatsompop, Recommendations for h-BN loading and service temperature to achieve low friction coefficient and wear rate for thermal-sprayed PEEK coatings, Surf. Coat. Technol. 321 (2017) 477–483.

DOI: 10.1016/j.surfcoat.2017.05.022

Google Scholar

[143] Y. Zhao, Y. Wang, Z. Yu, M. Planche, F. Peyraut, H. Liao, A. Lasalle, A. Allimant, G. Montavon, Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating, J. Eur. Ceram. Soc. 38 (2018) 4512–4522.

DOI: 10.1016/j.jeurceramsoc.2018.06.007

Google Scholar

[144] K. Liu, H. Yan, P. Zhang, J. Zhao, Z. Yu, Q. Lu, Wear behaviors of TiN/WS2 + hBN/NiCrBSi self-lubricating composite coatings on TC4 alloy by laser cladding, Coatings, 10 (2020) 747-759.

DOI: 10.3390/coatings10080747

Google Scholar

[145] X.L. Lu, X.B. Liu, P.C. Yu, S.J. Qiao, Y.J. Zhai, M.D. Wang, Y. Chen, D. Xu, Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding, Opt. Laser Technol. 78 (2016) 87–94.

DOI: 10.1016/j.optlastec.2015.10.005

Google Scholar

[146] D. Misra, V. Nemane, S. Mukhopadhyay, S. Chatterjee, Effect of hBN and SiC addition on laser assisted processing of ceramic matrix composite coatings, Ceram. Int. 46 (2020) 9758-9764.

DOI: 10.1016/j.ceramint.2019.12.245

Google Scholar

[147] Y. Zhao, K. Feng, C. Yao, P. Nie, J. Huang, Z. Li, Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-cu and h-BN solid lubricants, Surf. Coat. Technol. 359 (2019) 485–494.

DOI: 10.1016/j.surfcoat.2018.12.017

Google Scholar

[148] V. Kumar, R. Rakshit, A.K. Das, Mechanical and tribological performance of fiber laser cladded h-BN + SS316 composite on SS316 surface, J. Mater. Process. Technol. 278 (2020) 116509.

DOI: 10.1016/j.jmatprotec.2019.116509

Google Scholar

[149] P. Srisungsitthisunti, S. Mahathanabodee, Surface modification on AISI 316L stainless steels by nanosecond laser with boron nitride powders, Mater. Today. 5 (2018) 9461-9466.

DOI: 10.1016/j.matpr.2017.10.125

Google Scholar

[150] M. Hussain, V. Mandal, P.K Singh, P. Kumar, V. Kumar, A.K. Das, Experimental study of microstructure, mechanical and tribological properties of cBN particulates SS316 alloy based MMCs fabricated by DMLS technique, J. Mech. Sci. Technol. 31 (2017) 2729-2737.

DOI: 10.1007/s12206-017-0516-3

Google Scholar