Effect of Nanofluids on Geologic Storage of Carbon Dioxide: A Critical Review

Article Preview

Abstract:

In this review paper, the role of nanofluids in enhancing the geologic storage of carbon dioxide and hydrogen is examined, with a focus on their impact on wettability (the ability of liquids to spread on or adhere to surfaces) and storage stability. Recent studies that investigate the effects of various nanofluids, including alumina and silica, on different geologic substrates systematically analyzed. It is highlighted how these nanofluids can reverse the wettability changes that are induced by organic acids, thereby enhancing the hydrophilicity (water-attracting nature) of reservoir rocks and improving the efficiency of CO2 and H2 trapping mechanisms (processes that confine these gases within the geological formations). It has been shown that optimal concentrations of nanofluids significantly improve the residual and structural trapping capacities of CO2. Additionally, the potential of nanofluids to facilitate CO2 mineralization on shale surfaces is discussed, further contributing to storage security. By synthesizing findings from multiple studies, a comprehensive understanding of the current advancements in nanofluid applications for geologic storage is provided, and key areas for future research to optimize their use in large-scale carbon and hydrogen sequestration projects are identified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-63

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Asadi, M. Molana, R. Ghasemiasl, T. Armaghani, M.-I. Pop, M. Saffari Pour, A new thermal conductivity model and two-phase mixed convection of CuO–water nanofluids in a novel I-shaped porous cavity heated by oriented triangular hot block, Nanomaterials 10 (2020) 2219.

DOI: 10.3390/nano10112219

Google Scholar

[2] R. Ghasemiasl, M.A. Taheri, M. Molana, N. Raoufi, Experimental investigation of thermal performance of the graphene oxide–coated plates, Heat Transfer - Asian Res. 49 (2020).

DOI: 10.1002/htj.21625

Google Scholar

[3] A. Aftab, M. Ali, M. Altaf, M. Sarmadivaleh, Influence of stearic acid and alumina nanofluid on CO₂ wettability of calcite substrates: Implications for CO₂ geological storage in carbonate reservoirs, J. Colloid Interface Sci. 646 (2023) 567–575.

DOI: 10.1016/j.jcis.2023.05.066

Google Scholar

[4] Y. Lu et al., Water wettability alternation of CO₂-water-shale system due to nanoparticles: Implications for CO₂ geo-storage, Int. J. Greenhouse Gas Control 124 (2023) 103836.

DOI: 10.1016/j.ijggc.2023.103836

Google Scholar

[5] M. Hosseini et al., Hydrogen-wettability alteration of Indiana limestone in the presence of organic acids and nanofluid, Int. J. Hydrogen Energy 48 (2023) 35220–35228.

DOI: 10.1016/j.ijhydene.2023.05.292

Google Scholar

[6] A. Al-Yaseri, M. Ali, G.R. Abbasi, H.R. Abid, N.K. Jha, Enhancing CO₂ storage capacity and containment security of basaltic formation using silica nanofluids, Int. J. Greenhouse Gas Control 112 (2021) 103516.

DOI: 10.1016/j.ijggc.2021.103516

Google Scholar

[7] Y.T. Youns, A.K. Manshad, Effect of Green Nanomaterials on CO₂ Diffusion Coefficient and Interfacial Tension in Nanofluids: Implication for CO₂ Sequestrations, Arab J. Sci. Eng. (2023) 1–29.

DOI: 10.1007/s13369-023-08551-9

Google Scholar

[8] M. Ali et al., Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage, Int. J. Hydrogen Energy 47 (2022) 14104–14120.

DOI: 10.1016/j.ijhydene.2022.02.149

Google Scholar

[9] M. Ali et al., Enhancing the CO₂ trapping capacity of Saudi Arabian basalt via nanofluid treatment: Implications for CO₂ geo-storage, Chemosphere 335 (2023) 139135.

DOI: 10.1016/j.chemosphere.2023.139135

Google Scholar

[10] S. Al-Anssari, A. Barifcani, S. Wang, L. Maxim, S. Iglauer, Wettability alteration of oil-wet carbonate by silica nanofluid, J. Colloid Interface Sci. 461 (2016) 435–442.

DOI: 10.1016/j.jcis.2015.09.051

Google Scholar

[11] A. Alanazi, M. Ali, M. Ali, A. Keshavarz, S. Iglauer, H. Hoteit, The reversal of carbonate wettability via alumina nanofluids: Implications for hydrogen geological storage, Fuel 370 (2024) 131842.

DOI: 10.1016/j.fuel.2024.131842

Google Scholar

[12] H. Singh, A. Islam, Enhanced safety of geologic CO₂ storage with nanoparticles, Int. J. Heat Mass Transfer 121 (2018) 463–476.

DOI: 10.1016/j.ijheatmasstransfer.2017.12.152

Google Scholar

[13] M. Ali, N.K. Jha, N. Pal, A. Keshavarz, H. Hoteit, M. Sarmadivaleh, Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook, Earth-Sci. Rev. 225 (2022) 103895.

DOI: 10.1016/j.earscirev.2021.103895

Google Scholar

[14] T.D. Rathnaweera, P.G. Ranjith, Nano-modified CO₂ for enhanced deep saline CO₂ sequestration: A review and perspective study, Earth-Sci. Rev. 200 (2020) 103035.

DOI: 10.1016/j.earscirev.2019.103035

Google Scholar

[15] M. Ali, M.F. Sahito, N.K. Jha, Z.-U.-A. Arain, S. Memon, A. Keshavarz, S. Iglauer, A. Saeedi, M. Sarmadivaleh, Effect of nanofluid on CO₂-wettability reversal of sandstone formation; implications for CO₂ geo-storage, J. Colloid Interface Sci. 559 (2020) 304–312.

DOI: 10.1016/j.jcis.2019.10.028

Google Scholar

[16] X. Han, F. Feng, M. Yan, Z. Cong, S. Liu, Y. Zhang, CO₂–water–rock reaction transport via simulation study of nanoparticles-CO₂ flooding and storage, Sustainable Energy Technol. Assess. 50 (2022) 101736.

DOI: 10.1016/j.seta.2021.101736

Google Scholar

[17] Z.-U.-A. Arain, A. Aftab, M. Ali, M. Altaf, M. Sarmadivaleh, Influence of stearic acid and alumina nanofluid on CO₂ wettability of calcite substrates: Implications for CO₂ geological storage in carbonate reservoirs, J. Colloid Interface Sci. 646 (2023) 567–575.

DOI: 10.1016/j.jcis.2023.05.066

Google Scholar

[18] A. Alanazi, M. Ali, M. Mowafi, S. Bawazeer, Z.K. Kaidar, H. Hoteit, Capillary-sealing efficiency of mica-proxy caprock for CO₂/H₂ geologic storage in the presence of organic acids and nanofluids, SPE J. (2023) 1–16.

DOI: 10.2118/217471-pa

Google Scholar

[19] J. Kumasaka, Y. Sugai, F. Ishibashi, Numerical Simulation Study on Enhanced Efficiency of Geological CO₂ Storage with Nanoparticle, in: Proc. Int. Petroleum Technol. Conf., Dhahran, Saudi Arabia, 2024.

DOI: 10.2523/iptc-23852-ms

Google Scholar

[20] S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, M. Lebedev, S. Iglauer, CO₂ geo-storage capacity enhancement via nanofluid priming, Int. J. Greenhouse Gas Control 63 (2017) 20–25.

DOI: 10.1016/j.ijggc.2017.04.015

Google Scholar

[21] S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, M. Lebedev, S. Iglauer, Wettability of nanofluid-modified oil-wet calcite at reservoir conditions, Fuel 211 (2018) 405–414.

DOI: 10.1016/j.fuel.2017.08.111

Google Scholar

[22] B. Pan, X. Yin, S. Iglauer, Rock-fluid interfacial tension at subsurface conditions: Implications for H₂, CO₂ and natural gas geo-storage, Int. J. Hydrogen Energy 46 (2021) 25578–25585.

DOI: 10.1016/j.ijhydene.2021.05.067

Google Scholar

[23] M. Ali et al., Effect of nanofluid on CO₂-wettability reversal of sandstone formation; implications for CO₂ geo-storage, J. Colloid Interface Sci. 559 (2020) 304–312.

DOI: 10.1016/j.jcis.2019.10.028

Google Scholar

[24] M. Ali et al., CO₂-wettability reversal of cap-rock by alumina nanofluid: Implications for CO₂ geo-storage, Fuel Process. Technol. 214 (2021) 106722.

DOI: 10.1016/j.fuproc.2021.106722

Google Scholar

[25] N.K. Jha et al., Wettability alteration of quartz surface by low-salinity surfactant nanofluids at high-pressure and high-temperature conditions, Energy Fuels 33 (2019) 7062–7068.

DOI: 10.1021/acs.energyfuels.9b01102

Google Scholar