[1]
A. Asadi, M. Molana, R. Ghasemiasl, T. Armaghani, M.-I. Pop, M. Saffari Pour, A new thermal conductivity model and two-phase mixed convection of CuO–water nanofluids in a novel I-shaped porous cavity heated by oriented triangular hot block, Nanomaterials 10 (2020) 2219.
DOI: 10.3390/nano10112219
Google Scholar
[2]
R. Ghasemiasl, M.A. Taheri, M. Molana, N. Raoufi, Experimental investigation of thermal performance of the graphene oxide–coated plates, Heat Transfer - Asian Res. 49 (2020).
DOI: 10.1002/htj.21625
Google Scholar
[3]
A. Aftab, M. Ali, M. Altaf, M. Sarmadivaleh, Influence of stearic acid and alumina nanofluid on CO₂ wettability of calcite substrates: Implications for CO₂ geological storage in carbonate reservoirs, J. Colloid Interface Sci. 646 (2023) 567–575.
DOI: 10.1016/j.jcis.2023.05.066
Google Scholar
[4]
Y. Lu et al., Water wettability alternation of CO₂-water-shale system due to nanoparticles: Implications for CO₂ geo-storage, Int. J. Greenhouse Gas Control 124 (2023) 103836.
DOI: 10.1016/j.ijggc.2023.103836
Google Scholar
[5]
M. Hosseini et al., Hydrogen-wettability alteration of Indiana limestone in the presence of organic acids and nanofluid, Int. J. Hydrogen Energy 48 (2023) 35220–35228.
DOI: 10.1016/j.ijhydene.2023.05.292
Google Scholar
[6]
A. Al-Yaseri, M. Ali, G.R. Abbasi, H.R. Abid, N.K. Jha, Enhancing CO₂ storage capacity and containment security of basaltic formation using silica nanofluids, Int. J. Greenhouse Gas Control 112 (2021) 103516.
DOI: 10.1016/j.ijggc.2021.103516
Google Scholar
[7]
Y.T. Youns, A.K. Manshad, Effect of Green Nanomaterials on CO₂ Diffusion Coefficient and Interfacial Tension in Nanofluids: Implication for CO₂ Sequestrations, Arab J. Sci. Eng. (2023) 1–29.
DOI: 10.1007/s13369-023-08551-9
Google Scholar
[8]
M. Ali et al., Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage, Int. J. Hydrogen Energy 47 (2022) 14104–14120.
DOI: 10.1016/j.ijhydene.2022.02.149
Google Scholar
[9]
M. Ali et al., Enhancing the CO₂ trapping capacity of Saudi Arabian basalt via nanofluid treatment: Implications for CO₂ geo-storage, Chemosphere 335 (2023) 139135.
DOI: 10.1016/j.chemosphere.2023.139135
Google Scholar
[10]
S. Al-Anssari, A. Barifcani, S. Wang, L. Maxim, S. Iglauer, Wettability alteration of oil-wet carbonate by silica nanofluid, J. Colloid Interface Sci. 461 (2016) 435–442.
DOI: 10.1016/j.jcis.2015.09.051
Google Scholar
[11]
A. Alanazi, M. Ali, M. Ali, A. Keshavarz, S. Iglauer, H. Hoteit, The reversal of carbonate wettability via alumina nanofluids: Implications for hydrogen geological storage, Fuel 370 (2024) 131842.
DOI: 10.1016/j.fuel.2024.131842
Google Scholar
[12]
H. Singh, A. Islam, Enhanced safety of geologic CO₂ storage with nanoparticles, Int. J. Heat Mass Transfer 121 (2018) 463–476.
DOI: 10.1016/j.ijheatmasstransfer.2017.12.152
Google Scholar
[13]
M. Ali, N.K. Jha, N. Pal, A. Keshavarz, H. Hoteit, M. Sarmadivaleh, Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook, Earth-Sci. Rev. 225 (2022) 103895.
DOI: 10.1016/j.earscirev.2021.103895
Google Scholar
[14]
T.D. Rathnaweera, P.G. Ranjith, Nano-modified CO₂ for enhanced deep saline CO₂ sequestration: A review and perspective study, Earth-Sci. Rev. 200 (2020) 103035.
DOI: 10.1016/j.earscirev.2019.103035
Google Scholar
[15]
M. Ali, M.F. Sahito, N.K. Jha, Z.-U.-A. Arain, S. Memon, A. Keshavarz, S. Iglauer, A. Saeedi, M. Sarmadivaleh, Effect of nanofluid on CO₂-wettability reversal of sandstone formation; implications for CO₂ geo-storage, J. Colloid Interface Sci. 559 (2020) 304–312.
DOI: 10.1016/j.jcis.2019.10.028
Google Scholar
[16]
X. Han, F. Feng, M. Yan, Z. Cong, S. Liu, Y. Zhang, CO₂–water–rock reaction transport via simulation study of nanoparticles-CO₂ flooding and storage, Sustainable Energy Technol. Assess. 50 (2022) 101736.
DOI: 10.1016/j.seta.2021.101736
Google Scholar
[17]
Z.-U.-A. Arain, A. Aftab, M. Ali, M. Altaf, M. Sarmadivaleh, Influence of stearic acid and alumina nanofluid on CO₂ wettability of calcite substrates: Implications for CO₂ geological storage in carbonate reservoirs, J. Colloid Interface Sci. 646 (2023) 567–575.
DOI: 10.1016/j.jcis.2023.05.066
Google Scholar
[18]
A. Alanazi, M. Ali, M. Mowafi, S. Bawazeer, Z.K. Kaidar, H. Hoteit, Capillary-sealing efficiency of mica-proxy caprock for CO₂/H₂ geologic storage in the presence of organic acids and nanofluids, SPE J. (2023) 1–16.
DOI: 10.2118/217471-pa
Google Scholar
[19]
J. Kumasaka, Y. Sugai, F. Ishibashi, Numerical Simulation Study on Enhanced Efficiency of Geological CO₂ Storage with Nanoparticle, in: Proc. Int. Petroleum Technol. Conf., Dhahran, Saudi Arabia, 2024.
DOI: 10.2523/iptc-23852-ms
Google Scholar
[20]
S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, M. Lebedev, S. Iglauer, CO₂ geo-storage capacity enhancement via nanofluid priming, Int. J. Greenhouse Gas Control 63 (2017) 20–25.
DOI: 10.1016/j.ijggc.2017.04.015
Google Scholar
[21]
S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, M. Lebedev, S. Iglauer, Wettability of nanofluid-modified oil-wet calcite at reservoir conditions, Fuel 211 (2018) 405–414.
DOI: 10.1016/j.fuel.2017.08.111
Google Scholar
[22]
B. Pan, X. Yin, S. Iglauer, Rock-fluid interfacial tension at subsurface conditions: Implications for H₂, CO₂ and natural gas geo-storage, Int. J. Hydrogen Energy 46 (2021) 25578–25585.
DOI: 10.1016/j.ijhydene.2021.05.067
Google Scholar
[23]
M. Ali et al., Effect of nanofluid on CO₂-wettability reversal of sandstone formation; implications for CO₂ geo-storage, J. Colloid Interface Sci. 559 (2020) 304–312.
DOI: 10.1016/j.jcis.2019.10.028
Google Scholar
[24]
M. Ali et al., CO₂-wettability reversal of cap-rock by alumina nanofluid: Implications for CO₂ geo-storage, Fuel Process. Technol. 214 (2021) 106722.
DOI: 10.1016/j.fuproc.2021.106722
Google Scholar
[25]
N.K. Jha et al., Wettability alteration of quartz surface by low-salinity surfactant nanofluids at high-pressure and high-temperature conditions, Energy Fuels 33 (2019) 7062–7068.
DOI: 10.1021/acs.energyfuels.9b01102
Google Scholar