Innovative Strategies for High-Efficiency, Low-Cost, Lightweight III-V Multijunction Solar Cells

Article Preview

Abstract:

III-V-based multijunction solar cells (MJSCs) are leading technologies in renewable energy due to their high power conversion efficiency; however, high production costs limit their widespread market adoption. This paper presents two recent innovative strategies aimed at enhancing the economic viability of lightweight multijunction solar cells without sacrificing performance. First, an optimization study of the epitaxial lift-off (ELO) process which aims to achieve crack-free, lattice-mismatched multijunction solar cells is discussed. This method not only facilitates the reuse of III-V substrates but also leads to substantial material savings. Then, a novel plateau-multijunction solar cell design is introduced. This strategy minimizes the use of costly III-V material while achieving optimal power conversion efficiency. In a broader context, this article seeks to contribute to the roadmap for making III-V multijunction solar cells more economically feasible, thereby promoting their integration into the renewable energy market, particularly for electric automobile and space applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Shockley and H. Queisser: J. Appl. Phys. Vol. 32, pp.510-519 (1961).

Google Scholar

[2] S. Rühle: Solar Energy Vol. 130, pp.139-47 (2016).

Google Scholar

[3] Fraunhofer Institute for Solar Energy Systems: Press Release #13, May 2022.

Google Scholar

[4] A. Feltrin and A. Freundlich: Renewable Energy Vol. 33, pp.180-185 (2008).

Google Scholar

[5] B.M. Yu Jeco-Espaldon and Y. Okada: submitted to Solar RRL (2024).

Google Scholar

[6] B.M. Yu Jeco-Espaldon and Y. Okada: In: 2023 IEEE International Future Energy Electronics Conference (IFEEC); Nov 20, 2023; pp.1-5.

DOI: 10.1109/ifeec58486.2023.10458532

Google Scholar

[7] S.N. Wu et al.: Prog. Photovoltaics Res. Appl. Vol. 18(5), pp.328-333 (2010).

Google Scholar

[8] R.R. King et al.: In Proc. 3rd World Conference on Photovoltaic Energy Conversion; May 2003; Vol. 1, pp.622-625.

Google Scholar

[9] A. Cornfeld, J. Diaz, and T. Varghese, U.S. Patent 7,960,201B2 (2011).

Google Scholar

[10] M.A. Stan, A. Cornfeld, and V. Ley, U.S. Patent 7,727,795B2 (2010).

Google Scholar

[11] A. Cornfeld, T. Varghese, and J. Diaz, U.S. Patent 8,039,291B2 (2011).

Google Scholar

[12] P.R. Sharps et al., U.S. Patent 7,785,989B2 (2010).

Google Scholar

[13] G.J. Bauhuis, P. Mulder, and J.J. Schermer: In: High-Efficiency Solar Cells: Physics, Materials, and Devices; pp.623-643 (2014).

DOI: 10.1007/978-3-319-01988-8_21

Google Scholar

[14] M. Konagai, M. Sugimoto, K. Takahashi: J. Crys. Growth Vol. 45, pp.277-280 (1978).

Google Scholar

[15] K. Xiong et al.: Ener. Sci. Eng. Vol. 6, pp.47-55 (2018).

Google Scholar

[16] M.P. Lumb et al.: In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC); June 2014; pp.491-494.

Google Scholar

[17] C.A. Sweet et al.: Appl. Phys. Lett. Vol. 108, p.1 (2016).

Google Scholar

[18] K.L. Schulte et al.: Joule Vol. 7, pp.1529-1542 (2023).

Google Scholar

[19] X.Y. Lee et al.: In AIP Conference Proceedings Vol. 394, pp.719-727 (1997).

Google Scholar

[20] G.J. Bauhuis et al.: Sol. Ener. Mater. and Sol. Cells Vol. 93, pp.1488-1491 (2009).

Google Scholar

[21] A.T.J. Van Niftrik et al.: J. Electrochem. Soc. Vol. 154, p.D629 (2007).

Google Scholar

[22] J.J. Schermer et al.: Thin Solid Films Vol. 511, pp.645-653 (2006).

Google Scholar

[23] N. Pan: In 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014); pp.347-349 (2014).

Google Scholar

[24] X. Qi et al.: In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC); pp.1007-1009 (2022).

Google Scholar

[25] N. Miyashita, B. Behaghel, J.F. Guillemoles and Y. Okada: Appl. Phys. Express Vol. 11, p.072301 (2018).

Google Scholar

[26] G.J. Bauhuis et al.: Prog. Photovoltaics Res. and Appl. Vol. 18, pp.155-159 (2010).

Google Scholar

[27] C.W. Cheng et al.: Nat. Comm. Vol. 4, p.1577 (2013).

Google Scholar

[28] C.L. Stender et al.: In 2014 Lester Eastman Conference on High Performance Devices (LEC); pp.1-3 (2014).

Google Scholar

[29] Y. Kim et al.: Appl. Phys. Lett. Vol. 111 (2017).

Google Scholar

[30] J.J. Schermer et al.: Phys. Status Solidi (a) Vol. 202(4), pp.501-508 (2005).

Google Scholar

[31] P.R. Hageman et al.: In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996; pp.57-60 (1996).

DOI: 10.1109/pvsc.1996.563934

Google Scholar

[32] N. Miyashita et al.: In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC); pp.1502-1505 (2019).

Google Scholar

[33] T. Nakata et al: Jap. J. Appl. Phys. Vol. 57, p. 08RF03 (2018).

Google Scholar

[34] T.A. Major et al.: In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC); pp.1296-1297 (2020).

Google Scholar

[35] T. Paulauskas et al.: Semiconductor Sci. Tech. Vol. 38, p.035009 (2023).

Google Scholar

[36] K. Lee, J. Lee, B.A. Mazor and S.R. Forrest: In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC); pp.2127-2129 (2014).

DOI: 10.1109/pvsc.2014.6925344

Google Scholar

[37] M.G. So et al.: Appl. Sci. Convergence Tech. Vol. 29(1), pp.10-13 (2020).

Google Scholar

[38] S. Sharma et al.: In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC); pp.115-115 (2022).

Google Scholar

[39] D. van der Woude et al.: In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC); pp.0431-0433 (2020).

Google Scholar

[40] E.J. Renteria et al.: In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC); pp.2310-2312 (2016).

Google Scholar

[41] R.H. Horng, F.L. Wu, S.L. Ou and Y.C. Kao: In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC); pp.1-3 (2015).

Google Scholar

[42] G.J. Bauhuis et al.: In AIP Conference Proceedings Vol. 1277; pp.16-19 (2010).

Google Scholar

[43] C.M. Campbell, C.Y. Tsai, J. Ding and Y.H. Zhang: IEEE J. Photovoltaics Vol. 9(6), pp.1834-1838 (2019).

Google Scholar

[44] J. Ding et al.: In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC); pp.1213-1216 (2021).

Google Scholar

[45] J.S. Ward et al.: Prog. Photovoltaics Res. Appl. Vol. 24(9), pp.1284-1292 (2016).

Google Scholar

[46] C. Youtsey et al.: In CS MANTECH Conference; Boston (April 2012).

Google Scholar

[47] K. Lee, J.D. Zimmerman, Y. Zhang and S.R. Forrest: In 2012 38th IEEE Photovoltaic Specialists Conference; pp.001698-001700 (2012).

DOI: 10.1109/pvsc.2012.6317922

Google Scholar

[48] S. Sharma, C.A. Favela, S. Sun and V. Selvamanickam: In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC); pp.0744-0746 (2020).

DOI: 10.1109/pvsc45281.2020.9300363

Google Scholar

[49] T. Sogabe et al.: Appl. Phys. Lett. Vol. 105(11) (2014).

Google Scholar

[50] J. Ding, C.Y Tsai, Z. Ju and Y.H Zhang: Appl. Phys. Lett. Vol. 118(18) (2021).

Google Scholar

[51] R.H. Van Leest et al.: Sol. Ener. Mater. Sol. Cells Vol 140, pp.45-53 (2015).

Google Scholar

[52] D.Cardwell et al.: In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC); pp.3511-3513 (2017).

Google Scholar

[53] D. Cardwell and N. Pan.: In Optics for Solar Energy; p. OW5C-6 (2018).

Google Scholar

[54] A.B. Cornfeld et al.: In 2008 33rd IEEE Photovoltaic Specialists Conference; pp.1-5 (2008).

Google Scholar

[55] A.B. Cornfeld et al.: In 2010 35th IEEE Photovoltaic Specialists Conference; pp.000105-000109 (2010).

Google Scholar

[56] R. Tatavarti et al.: In 2011 37th IEEE Photovoltaic Specialists Conference; pp.001941-001944 (2011).

Google Scholar

[57] J. Schön et al.: Prog. Photovoltaics Res. Appl. Vol. 30(8), pp.1003-1011 (2022).

Google Scholar

[58] B.M. Yu Jeco-Espaldon et al.: In 2024 52nd IEEE Photovoltaic Specialists Conference; pp.0051-0058 (2024).

Google Scholar

[59] S. Abdul Hadi, E.A. Fitzgerald, and A. Nayfeh: J. Appl. Phys. Vol. 119(7) (2016).

Google Scholar