[1]
ASHRAE (2008) Handbook–HVAC Systems and Equipment, American Society of Heating, Refrigerating and Air–Conditioning Engineers, Inc.
Google Scholar
[2]
Daou, K., Wang, R.Z., Xia, Z.Z. (2006) Desiccant cooling air conditioning: a review. Renew & Sust. Energy Rev., 10, 55-77.
DOI: 10.1016/j.rser.2004.09.010
Google Scholar
[3]
Roth, K.W., Westphalen, D., Dieckmann, J., Hamilton, S. D, and Goetzler, W. (2005), Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III: Energy Savings Potential.
Google Scholar
[4]
Treybal R.E. (1981) Mass Transfer Operations, McGraw –Hill, New York.
Google Scholar
[5]
Fumo, N., Goswami, D.Y. (2002) Study of An aqueous Lithium Chloride Desiccant System: Air Dehumidification and Desiccant Regeneration. Solar Energy, Vol. 72, No. 4. pp.351-361.
DOI: 10.1016/s0038-092x(02)00013-0
Google Scholar
[6]
Oberg, V., Goswami, D.Y. (1998) Experimental Study of the Heat and Mass Transfer in a Packed Bed Liquid Desiccant Air Dehumidifier. Journal of Solar Energy Engineering. Vol. 120. pp.289-297.
DOI: 10.1115/1.2888133
Google Scholar
[7]
Mago,P. and Goswami, D.Y. (2003) A Study of the Performance of a Hybrid Liquid Desiccant Cooling System Using Lithium Chloride, Journal of Solar Energy Engineering, Vol. 125, pp.129-131.
DOI: 10.1115/1.1530199
Google Scholar
[8]
Min Tu, Cheng-Qin Ren, Long-Ai Zhang, Jian-Wei Shao. (2008) Simulation and analysis of a novel liquid desiccant air-conditioning system, Applied Thermal Engineering.
DOI: 10.1016/j.applthermaleng.2008.12.006
Google Scholar
[9]
Gommed, K., Grossman, G. (2007) Experimental investigation of a Liquid desiccant system for solar cooling and dehumidification. Solar Energy, Vol. 81, pp.131-138.
DOI: 10.1016/j.solener.2006.05.006
Google Scholar
[10]
Chen X. Y, Li Z. Jiang Y., Qu K.Y. (2006) Analytical solution of adiabatic heat and mass transfer process in packed-type liquid desiccant equipment and its application. Solar Energy, Vol. 80, pp.1509-1516.
DOI: 10.1016/j.solener.2005.12.002
Google Scholar
[11]
Yin,Y., Zhang,X. and Chen,Z. (2007).
Google Scholar
0181 Gas Mass Velocity [kg/(s-m2)].
Google Scholar
[1]
176 Inlet Gas Temperature(°C).
Google Scholar
[30]
0 Desiccant Concentration(kglicl/kgsol).
Google Scholar
348 Desiccant Mass Velocity[kg/(s-m2)].
Google Scholar
[6]
206 Moisture To Remove (%).
Google Scholar
[40]
88 Inlet Desiccant Temperature(°C).
Google Scholar
[30]
2 TABLE II. Experimental Data Inputs 1 2 3 Humidity Ratio( kgw/kga).
Google Scholar
0111 Gas Mass Velocity [kg/(s-m2)].
Google Scholar
[2]
842 Inlet Gas Temperature(°C) 26 26 26 Desiccant Concentration(kglicl/kgsol).
Google Scholar
35 Desiccant Mass Velocity[kg/(s-m2)].
Google Scholar
[2]
084 Moisture To Remove (%).
Google Scholar
[18]
92 Inlet Desiccant Temperature(°C) 27 27 27 Figure 4. Comparison of the Finite difference Model and Experimental Figure 5. Comparison of the Finite difference Model and Experimental Figure 6. Packing height as a function of percent moisture removed. Figure 7. Packing height as a function of air mass velocity Figure 8. Packing height as a function of inlet desiccant temperature Figure 9. Packing height as a function of inlet desiccant temperature.
DOI: 10.7554/elife.42646.021
Google Scholar