Numerical Solution of an Edge Cracked 2-D Piezoelectric Media Using Extended Finite Element Method

Article Preview

Abstract:

The numerical solution for an edge crack problem in a two-dimensional (2-D) finite piezoelectric media has been discussed using extended finite element method. The four-fold standard enrichment functions are taken in conjugation with the interaction integral to evaluate the intensity factors (IFs). The intensity factors as well as the mechanical energy release rate and the total energy release rate has been analyzed for different electro-mechanical boundary conditions. It is observed that the IFs results are coupled and contrary to analytic solution which shows uncoupled behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-98

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Allik, and T.J. R Hughes, Finite element method for piezoelectric vibration, International Journal for Numerical Methods in Engineering, vol. 2, 1970, pp.151-157, doi: 10. 1002/nme. 1620020202.

DOI: 10.1002/nme.1620020202

Google Scholar

[2] S. Kumar and R.N. Singh, Crack propagation in piezoelectric materials under combined mechanical and electrical load, Acta Materillia, vol. 44 1996, pp.173-200, doi: 10. 1016/1359-6454(95)00175-3.

DOI: 10.1016/1359-6454(95)00175-3

Google Scholar

[3] A. Ricoeur, M. Enderlein and M. Kuna, Calculation of the J-integral for limited permeable cracks in piezoelectrics, Archive of Applied Mechanics, vol. 74, 2005, pp.536-549, doi: 10. 1007/s00419-004-0370-5.

DOI: 10.1007/s00419-004-0370-5

Google Scholar

[4] T.J.C. Liu, Anomalies associated with energy release parameters for cracks in piezoelectric materials, Theoretical and Applied Fracture Mechanics, vol. 51, 2009, pp.102-110, doi: 10. 1016/j. tafmec. 2009. 04. 007.

DOI: 10.1016/j.tafmec.2009.04.007

Google Scholar

[5] N.J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol. 46, 1999, pp.131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[6] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, vol. 45, 1999, pp.601-620.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[7] E.M. Scherzer and M. Kuna, Application of the X-FEM to the fracture of piezoelectric materials, International Journal for Numerical Methods in Engineering, vol. 77, 2009, pp.1535-1565, doi: 10. 1002/nme. 2455.

DOI: 10.1002/nme.2455

Google Scholar

[8] H. Sosa, On the fracture mechanics of piezoelectric solids, International Journal of Solids and Structures, vol. 29, 1992, pp.2613-2622, doi: 10. 1016/0020-7683(92)90225-I.

DOI: 10.1016/0020-7683(92)90225-i

Google Scholar

[9] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol. 79, 1988, pp.12-49, doi: 10. 1016/0021-9991(88)90002-2.

DOI: 10.1016/0021-9991(88)90002-2

Google Scholar

[10] M. Stolarska, DL Chopp, N. T. Belytschko, Modelling crack growth by level sets in the extended finite element method, International Journal for Numerical Methods in Engineering, vol. 51, 2001, pp.943-960, doi: 10. 1002/nme. 201.

DOI: 10.1002/nme.201

Google Scholar

[11] V. Piefort and A. Preumont, Finite element modeling of piezoelectric structures, Active Structures Laboratory. ULB-CP 165/42.

Google Scholar

[12] H. Ewalds and R. Wanhill, Fracture Mechanics, Edward Arnold, (1984).

Google Scholar

[13] M.J. McNary, Implementation of the XFEM in the ABAQUS software package, M. Sc. Thesis, 2009, Georgia Institute of Technology. TABLE II IFS and Energy release rate MPa C/m2 %KI error %KIV error %GM error %G error.

Google Scholar

53 -10. 68 -3. 93 -163. 02.

Google Scholar

[29] 15.

Google Scholar

[3] 25.

Google Scholar

[3] 52.

Google Scholar

[1] 0 0.

Google Scholar

[4] 68.

Google Scholar

[7] 66.

Google Scholar

[1] 0 -0. 0001.

Google Scholar

57 -59. 39.

Google Scholar

[6] 36.

Google Scholar

[15] 92.

Google Scholar

[1] 0 -0. 001.

Google Scholar

60 -19. 54.

Google Scholar

[79] 95 -38. 37.

Google Scholar

[7] 02.

Google Scholar

[2] 01.

Google Scholar

[1] 57.

Google Scholar

[10] 0.

Google Scholar

[29] 15.

Google Scholar

[3] 25.

Google Scholar

[3] 52.

Google Scholar