[1]
H. Allik, and T.J. R Hughes, Finite element method for piezoelectric vibration, International Journal for Numerical Methods in Engineering, vol. 2, 1970, pp.151-157, doi: 10. 1002/nme. 1620020202.
DOI: 10.1002/nme.1620020202
Google Scholar
[2]
S. Kumar and R.N. Singh, Crack propagation in piezoelectric materials under combined mechanical and electrical load, Acta Materillia, vol. 44 1996, pp.173-200, doi: 10. 1016/1359-6454(95)00175-3.
DOI: 10.1016/1359-6454(95)00175-3
Google Scholar
[3]
A. Ricoeur, M. Enderlein and M. Kuna, Calculation of the J-integral for limited permeable cracks in piezoelectrics, Archive of Applied Mechanics, vol. 74, 2005, pp.536-549, doi: 10. 1007/s00419-004-0370-5.
DOI: 10.1007/s00419-004-0370-5
Google Scholar
[4]
T.J.C. Liu, Anomalies associated with energy release parameters for cracks in piezoelectric materials, Theoretical and Applied Fracture Mechanics, vol. 51, 2009, pp.102-110, doi: 10. 1016/j. tafmec. 2009. 04. 007.
DOI: 10.1016/j.tafmec.2009.04.007
Google Scholar
[5]
N.J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol. 46, 1999, pp.131-150.
DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
Google Scholar
[6]
T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, vol. 45, 1999, pp.601-620.
DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
Google Scholar
[7]
E.M. Scherzer and M. Kuna, Application of the X-FEM to the fracture of piezoelectric materials, International Journal for Numerical Methods in Engineering, vol. 77, 2009, pp.1535-1565, doi: 10. 1002/nme. 2455.
DOI: 10.1002/nme.2455
Google Scholar
[8]
H. Sosa, On the fracture mechanics of piezoelectric solids, International Journal of Solids and Structures, vol. 29, 1992, pp.2613-2622, doi: 10. 1016/0020-7683(92)90225-I.
DOI: 10.1016/0020-7683(92)90225-i
Google Scholar
[9]
S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol. 79, 1988, pp.12-49, doi: 10. 1016/0021-9991(88)90002-2.
DOI: 10.1016/0021-9991(88)90002-2
Google Scholar
[10]
M. Stolarska, DL Chopp, N. T. Belytschko, Modelling crack growth by level sets in the extended finite element method, International Journal for Numerical Methods in Engineering, vol. 51, 2001, pp.943-960, doi: 10. 1002/nme. 201.
DOI: 10.1002/nme.201
Google Scholar
[11]
V. Piefort and A. Preumont, Finite element modeling of piezoelectric structures, Active Structures Laboratory. ULB-CP 165/42.
Google Scholar
[12]
H. Ewalds and R. Wanhill, Fracture Mechanics, Edward Arnold, (1984).
Google Scholar
[13]
M.J. McNary, Implementation of the XFEM in the ABAQUS software package, M. Sc. Thesis, 2009, Georgia Institute of Technology. TABLE II IFS and Energy release rate MPa C/m2 %KI error %KIV error %GM error %G error.
Google Scholar
53 -10. 68 -3. 93 -163. 02.
Google Scholar
[1]
0 -0. 0001.
Google Scholar
[1]
0 -0. 001.
Google Scholar
[79]
95 -38. 37.
Google Scholar