Simulation BeSe Nanowires in Two Phasese Zinc-Blende and Wurtzite Using Density Functional Theory

Article Preview

Abstract:

In this work, we are reporting on the simulation of the beryllium selenide (BeSe) nanowires (NWs) by computational package Q-Espresso / PWSCF according to the ab-initio calculations. Structural and electronic properties, including cohesive energy and Density Of State (DOS) BeSe NWs in two phases on the zinc–blende (ZB) and wurtzite (WZ), using density functional theory based on pseudo-potential approximation and generalized gradient approximation (GGA) up to 20 angstrom in diameter has been calculated. Due to dangling bonds (DBs) in the side surface NWs, cohesive energy is obtained less than the amount of this energy in bulk state of this compound, but with increasing diameter of NWs, the amount of this energy will approach to the bulk state. Comparison of cohesive energy with beryllium selenide NWs in two phases, we find these NWs in WZ phase is more stable and have good compatibility for this result with other results in NWs of similar compounds. The value of energy gap in these NWs on various diameters is obtained less than the amount of the bulk state. It is observed that by increasing the diameter of NWs, the cohesive energy approaches to its value in bulk state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1264-1269

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Im, R.P. Vasques, C. Lee, N. Myung, R. Penner, M. Yun, J. Physics 38 (2006) 61.

Google Scholar

[2] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Yu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292 (2001) 1897.

Google Scholar

[3] R. Agrawal, C.M. Lieber, Appl. Phys. A 85 (2006) 209.

Google Scholar

[4] X. Xu, P. Servati, NANO LETTERS (2009) 1999. ‏.

Google Scholar

[5] Y. Li, PhD thesis (2006).

Google Scholar

[6] K. Kishino, I. Nomura, Photonics Based on Wavelength Integration, Manipulation IPAP Books 2 (2005) 39.

Google Scholar

[7] O. Maksimov, Rev. Adv. Mater. Sci. 9 (2005) 178.

Google Scholar

[8] M. Nagelstraβer, H. Droge, H.P. Steinrüch, F. Fischer, T. Litz, A. Waag, G. Landwehr, A. Fleszar, W. Hanke, Phys. Rev. B 58 (1997) 10394.

Google Scholar

[9] T. Sandu, W.P. Kirk, Phys. Rev. B 73 (2006) 235307.

Google Scholar

[10] D. Heciri, L. Beldi, S. Drablia, H. Meradji, N.E. Derradji, H. Belkhir, B. Bouhafs, Comp. Mat. Sci. 38 (2007) 609.

DOI: 10.1016/j.commatsci.2006.04.003

Google Scholar

[11] A. Berghout, A. Zaoui, J. Hugel, J. Phys.: Cond. Matt. 18 (2006) 10365.

Google Scholar

[12] F.E. Haj Hassan, H. Akbarzadeh, Comp. Mat. Sci. 35 (2006) 423.

Google Scholar

[13] R. Khenata, A. Bouhemadou, M. Hichour, H. Baltache, D. Rached, M. Rérat, Solid State Electronics 50 (2006) 1382.

DOI: 10.1016/j.sse.2006.06.019

Google Scholar

[14] P.S. Yadav, R.K. Yadav, S. Agrawal, B.K. Agrawal, 2007 Physica E 36 (2007) 79.

Google Scholar

[15] A. Berghout, A. Zaoui, J. Hugel, Superlattices and Microstructures 44 (2008) 112.

Google Scholar

[16] G. Chambaud, M. Cuitou, S. Hayashi, Chem. Phys. 352 (2008) 174.

Google Scholar

[17] C. Jing, C. Xiang-Rong, Z. Wei, Z. Jun, Chinese Physics B 17 (2008) 1377.

Google Scholar

[18] S. Bağci, S. Duman, H.M. Tütüncü, G.P. Srivastava, J Physics: Conference Series 92 (2007) 012138.

Google Scholar

[19] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 72, (1998) 1835.

Google Scholar

[20] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 78, (2001) 2214.

Google Scholar

[21] B. Marsen and K. Sattler, Phys. Rev. B 60, (1999) 11593.

Google Scholar

[22] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, (1999) 237.

Google Scholar

[23] W. Zachariasen, Z. Physik Chem. (Leipzing) 119 (1926) 210; W. Zachariasen, Z. Physik Chem. (Leipzing) 124 (1926) 440.

Google Scholar

[24] A. Waag, F. Fischer, H.J. Lugauer, T. Litz, J. Laubender, U. Lunz, U. Zhender, W. Ossau, T. Gerhardt, M. Moller, G. Landwehr, Appl. Phys. 80 (1996) 792.

DOI: 10.1063/1.362888

Google Scholar

[25] A. Muñoz, P. Rodríguez-Hernández, A. Mujica, Phys. Stat. Sol. (b) 198 (2006) 439.

Google Scholar

[26] K. Wilmers, T. Wethkamp, N. Esser, C. Cobet, W. Richter, V. Wagner, H. Lugauer, F. Fischer, T. Gerhard, M. Keim, M. Cardona, J. Electron. Mater 28 (1999) 670.

DOI: 10.1007/s11664-999-0052-8

Google Scholar

[27] H. Chen, D. Shi, J. Qi, J. Jia, B. Wang, Phys. Lett. A 373 (2009) 371.

Google Scholar