The Effect of Nanotube Specifications on Multi-Scale Modeling of Nanocomposites

Article Preview

Abstract:

The effect of diameter, chirality and volume fraction of SWCNTs on the tensile behavior of nanocomposites is studied. Multi-scale material modeling is applied to assemble different RVEs composed of various SWCNTs embedded in polymer. Nanotubes are modeled in continuum mechanics, based on their atomic structures as space frame structures. Beam elements in this structure are defined based on carbon bonds characteristics in molecular mechanics. Polymer portion of the RVE is modeled as a linear elastic continuum material, with lower accuracy regarding to the multi-scale modeling technique. Attained stress-strain curves obtained from modeled nanocomposites revealed that using Armchair SWCNTs in RVEs makes nanocomposites tougher rather than Zigzags. Also, diameter of CNT has an inverse effect on the curves level. Moreover, the effect of diameter is more obvious at higher volume fraction of CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1237-1244

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubes of graphitic carbon, Nature, vol. 354, pp.56-58, (1991).

Google Scholar

[2] D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes, Applied Mechanics Reviews, vol. 55, p.495–533, (2002).

DOI: 10.1115/1.1490129

Google Scholar

[3] D. Qian, E.C. Dickey, R. Andrews, and T. Rantell, Load transfer and‏ deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters, vol. 76n20, p.2868, (2000).

DOI: 10.1063/1.126500

Google Scholar

[4] R. Andrews, D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, and R. C. Haddon, Nanotube composite carbon fibers, Applied Physics Letters, vol. 75, pp.1329-1331, (1999).

DOI: 10.1063/1.124683

Google Scholar

[5] J.C. Kearns, R.L. Shambaugh, Polypropylene fibers reinforced with carbon nanotubes, J. Applied Polymer Science, Vol. 86, pp.2079-2084, (2002).

DOI: 10.1002/app.11160

Google Scholar

[6] S.J.V. Frankland, V.M. Harik, G.M. Odegard, D.W. Brenner, T.S. Gates, The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation, Composites Science and Technology, Vol. 63, p.1655–1661, (2003).

DOI: 10.1016/s0266-3538(03)00059-9

Google Scholar

[7] G.M. Odegard, T.S. Gates, K.E. Wise, C. Park, E.J. Siochi, Constitutive Modeling of Nanotube-Reinforced Polymer Composites, Composites Science and Technology, Vol. 63, p.1671–1687, (2003).

DOI: 10.1016/s0266-3538(03)00063-0

Google Scholar

[8] C. Li, T.W. Chou, Multiscale modeling of carbon nanotube reinforced polymer composites, Nanoscience and Nanotechnology, Vol. 3, p.423–30, (2003).

DOI: 10.1166/jnn.2003.233

Google Scholar

[9] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, vol. 40, p.2487–2499, (2003).

DOI: 10.1016/s0020-7683(03)00056-8

Google Scholar

[10] K.I. Tserpes, P. Panikos, G. Labeas, S.G. Panterlakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites, Theoretical and Applied Fracture Mechanics, vol. 49, p.51–60, (2008).

DOI: 10.1016/j.tafmec.2007.10.004

Google Scholar

[11] ABAQUS, ABAQUS Users Manual, version 6. 8, Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, USA, (2008).

Google Scholar

[12] H. Rafii-tabar, Computational Physics of Carbon Nanotubes, Cambridge University Press, New York, 2008, pp.24-32.

Google Scholar

[13] T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture, Physical Review, vol. 65, p.235–430, (2002).

DOI: 10.1103/physrevb.65.235430

Google Scholar

[14] M. Meo, M. Rossi, A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes, , Materials Science and Engineering, vol. 454-455, pp.170-177, (2007).

DOI: 10.1016/j.msea.2006.11.158

Google Scholar

[15] ABAQUS 6. 8 HTML Documentation, (2008).

Google Scholar

[16] K.I. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Composites, vol. 36, p.468–477, (2005).

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar