[1]
J.N. Reddy, Mechanics of Laminated Composite Plates and Shells Theory and Analysis, 2nd Edition, CRC Press, New York, (2004).
Google Scholar
[2]
N.J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J Compos Mater, vol. 4, p.20–34, (1973).
Google Scholar
[3]
T. Kant, K. Swaminathan, Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory, Compos Struct, vol. 56, p.329–344, (2002).
DOI: 10.1016/s0263-8223(02)00017-x
Google Scholar
[4]
H. Matsunaga, Assessment of a global higher-order deformation theory for laminated composite and sandwich plates. Compos Struct, vol. 56, p.279–291, (2002).
DOI: 10.1016/s0263-8223(02)00013-2
Google Scholar
[5]
J.N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, Int J Solids Struct, vol. 20, p.881–896, (1987).
DOI: 10.1016/0020-7683(84)90056-8
Google Scholar
[6]
E. Carrera, Mixed layer-wise models for multilayered plates analysis, Compos Struct, vol. 43, p.57–70, (1998).
DOI: 10.1016/s0263-8223(98)00097-x
Google Scholar
[7]
M.K. Rao, Y.M. Desai, Analytical solutions for vibrations of laminated and sandwich plates using mixed theory, Compos Struct, vol. 63, p.361–373, (2004).
DOI: 10.1016/s0263-8223(03)00185-5
Google Scholar
[8]
L. Demasi, Mixed plate theories based on the generalized unified formulation. PartIII: advanced mixed high order shear deformation theories. Compos Struct, vol. 87, p.183–94, (2009).
DOI: 10.1016/j.compstruct.2008.07.011
Google Scholar
[9]
T.S. Plagianakos, D.A. Saravanos, Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates, Compos Struct, vol. 87, p.23–35, (2009).
DOI: 10.1016/j.compstruct.2007.12.002
Google Scholar
[10]
M. Di Sciuva, Bending, vibration and bucking of simply-supported thick multilayered orthotropic plates: an evaluation of a new displacement model, J Sound Vib, vol. 105, p.425–442, (1986).
DOI: 10.1016/0022-460x(86)90169-0
Google Scholar
[11]
M. Cho, R.R. Parmerter, An efficient higher order plate theory for laminated composites, Compos Struct, vol. 20, p.113–123, (1992).
DOI: 10.1016/0263-8223(92)90067-m
Google Scholar
[12]
S. Kapuria, G.G.S. Achary, An efficient higher-order zigzag theory for laminated plates subjected to thermal loading. Int J Solids Struct, vol. 41, p.4661–4684, (2004).
DOI: 10.1016/j.ijsolstr.2004.02.020
Google Scholar
[13]
J.B. Dafedar, Y.M. Desai, A.A. Mufti, Stability of sandwich plates by mixed, higherorder analytical formulation, Int J Solids Struct, vol. 40, p.4501–4517, (2003).
DOI: 10.1016/s0020-7683(03)00283-x
Google Scholar
[14]
M.K. Pandit, A.H. Sheikh, B.N. Singh, An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core, Finite Elements in Analysis and Design, vol. 44, p.602–610, (2008).
DOI: 10.1016/j.finel.2008.02.001
Google Scholar
[15]
X. Li, D. Liu, A laminate theory based on global–local superposition. Communications in Numerical Methods in Engineering, vol. 11, p.633–641, (1995).
DOI: 10.1002/cnm.1640110802
Google Scholar
[16]
W. Zhen, C. Ronggeng, C. Wanji, Refined laminated composite plate element based on global–local higher-order shear deformation theory. Compos Struct, vol. 70, p.135–152, (2005).
DOI: 10.1016/j.compstruct.2004.08.019
Google Scholar
[17]
M. Cetkovic, D.J. Vuksanovic, Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model, Compos Struct, vol. 88, p.219–227, (2008).
DOI: 10.1016/j.compstruct.2008.03.039
Google Scholar
[18]
W. Zhen, C. Wanji, R. Xiaohui, An accurate higher-order theory and C0 finite element for free vibration analysis of laminated composite and sandwich plates, Compos Struct, vol. 92, p.1299–1307, (2010).
DOI: 10.1016/j.compstruct.2009.11.011
Google Scholar
[19]
M. Shariyat, A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads, Int. J. of Mechanical Sciences, vol. 52, p.495–514, (2010).
DOI: 10.1016/j.ijmecsci.2009.11.010
Google Scholar
[20]
Y. Frostig, Buckling of sandwich panels with a transversely flexible core: high-order theory, Int. J. Solids Struct, vol. 35, p.183–204, (1998).
DOI: 10.1016/s0020-7683(97)00078-4
Google Scholar
[21]
D.J. Dawe, W.X. Yuan, Overall and local buckling of sandwich plates with laminated faceplates. Part I: analysis, Comput Methods Appl Mech Eng, vol. 190, p.5197–5213, (2001).
DOI: 10.1016/s0045-7825(01)00169-4
Google Scholar
[22]
J. Hohe, L. Librescu, S.Y. Oh, Dynamic buckling of flat and curved sandwich panels with transversely compressible core, Compos Struct, vol. 74, p.10–24, (2006).
DOI: 10.1016/j.compstruct.2005.03.003
Google Scholar