Composite Materials Damage Characterization under Quasi-Static 3-Point Bending Test Using Fuzzy C-Means Clustering

Article Preview

Abstract:

In this study, acoustic emission (AE) monitoring with a Fuzzy C-Means (FCM) clustering is developed to detect the delamination process during quasi-static 3-point bending test on glass/epoxy composite materials. The main fracture mode that should be emphasized and has an effect on the residual strength of composite materials is delamination. The 3-point bending test simulates thrust force due to drilling process without backup plate. In this work, two types of specimen at different layups, woven [0,90] s and unidirectional [0] s, leading to different levels of damage evolution, were studied. Using acoustic emission monitoring can help to detect these fracture mechanisms. The obtained AE signals were classified using FCM. Dependency percentage of damages in each class is different in two specimens. Three parameters (Peak Amplitude, Count, and Average Frequency) were used to validate the FCM based classification. The results show that there is a good agreement with the FCM classification and microscopic observation by SEM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1221-1228

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Tagliaferri, G. Caprino, and A. Diterlizzi, Effect of drilling parameters on the finish and mechanical properties of GFRP composites, Int. J. Mach. Tool Manuf, vol. 30, pp.77-84, (1989).

DOI: 10.1016/0890-6955(90)90043-i

Google Scholar

[2] W. Chen, Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates, Int. J. Mach. Tools Manuf, vol. 37, p.1097–1108, (1997).

DOI: 10.1016/s0890-6955(96)00095-8

Google Scholar

[3] I. singh, Drilling of uni‏-directional glass fiber reinforced plastic‏: Experimental and finite element study, Materials and design, vol. 29, p.546‏-553, (2008).

DOI: 10.1016/j.matdes.2007.01.029

Google Scholar

[4] Y. Z. Pappas., Y. P. Markopoulos, and V. Kostopoulos, Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring, NDT&E International, vol. 31, pp.157-163, (1998).

DOI: 10.1016/s0963-8695(98)00002-4

Google Scholar

[5] Handbook of nondestructive testing, vol. 5 Acoustic Emission, American Society for Nondestructive Testing.

Google Scholar

[6] ASTM E610-98A. Definitions of terms relating to acoustic emission.

Google Scholar

[7] G. Romhany, and G. Szebenyi, Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites, Express Polymer Letters, vol. 3, pp.145-151, (2009).

DOI: 10.3144/expresspolymlett.2009.19

Google Scholar

[8] S. Benmedakhene, M. Kenane, and M. L. Benzeggagh, Initiation and growth of delamination‏ in glass/epoxy composites subjected to static and dynamic loading‏ by acoustic emission monitoring, Composite Science and Technology, vol. 59, pp.201-208, (1999).

DOI: 10.1016/s0266-3538(98)00063-3

Google Scholar

[9] O. Siron, G. Chollon, H. Tsuda, H. Yamauchi, K. Maeda, and K. Kosaka, Microstructural and mechanical properties of filler-added coal-tar pitch-based C/C composites: the damage and fracture process in correlation with AE waveform parameters, Carbon, vol. 39, pp.2065-2075, (2001).

DOI: 10.1016/s0008-6223(99)00270-5

Google Scholar

[10] C. R. Ramirez-Jimenez, N. Papadakis, N. Reynolds, T. H. Gan, P. Purnell, and M. Pharaoh, Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event, Composite Science and Technology, vol. 64, pp.1819-1827, (2004).

DOI: 10.1016/j.compscitech.2004.01.008

Google Scholar

[11] G. Qi, A. Barhorst, J. Hashemi, and G. Kamala, Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites, vol. 57, pp.389-403, (1997).

DOI: 10.1016/s0266-3538(96)00157-1

Google Scholar

[12] T. H. Loutas, V. Kostopoulos, C. Ramirez-Jimenez, and M. Pharaoh, Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms, Composite Science and Technology, vol. 66, pp.1366-1375, (2006).

DOI: 10.1016/j.compscitech.2005.09.011

Google Scholar

[13] T. P. Philippidis, V. N. Nikolaidis, and A. A. Anastassopoulos, Damage characterization of carbon/carbon laminates using neural network techniques on AE signals,  Original Research Article NDT & E International, vol. 31, pp.329-340, October (1998).

DOI: 10.1016/s0963-8695(98)00015-2

Google Scholar

[14] T. Yan, K. Holford, D. Carter, and J. Brandon, Classification of acoustic emission signatures using a self-organization neural network, Journal of Acoustic Emission, vol. 17, pp.49-59.

Google Scholar

[15] N. Godin, S. Huguet, R. Gaertner, and L. Salmon, Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers,   NDT & E International, vol. 37, pp.253-264, June (2004).

DOI: 10.1016/j.ndteint.2003.09.010

Google Scholar

[16] R. de Oliveira, and A.T. Marques, Health monitoring of FRP using acoustic emission and artificial neural networks, Computers & Structures, vol. 86, pp.367-373, February (2008).

DOI: 10.1016/j.compstruc.2007.02.015

Google Scholar

[17] S. Haykin, Neural Networks—A Comprehensive Foundation, 2nd ed., Macmillan College, New York, (1994).

Google Scholar

[18] S. Suresh, S. N. Omkar, V. Mani, and C. Menaka, Classification of acoustic emission signal sources using Genetic Programming, Journal of Aerospace Sciences and Technologies, vol. 56, p.26–40, (2004).

Google Scholar

[19] N. Godin, S. Huguet, and R. Gaertner, Integration of the Kohonen's self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites,   NDT & E International, vol. 38, pp.299-309, June (2005).

DOI: 10.1016/j.ndteint.2004.09.006

Google Scholar

[20] S. Z. Selim, and M. A. Ismail, K-means type algorithms: a generalized convergence theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, pp.81-87, (1984).

DOI: 10.1109/tpami.1984.4767478

Google Scholar

[21] S. N, Omkar, S. Suresh,T. R. Raghavendra, and V. Mani, Acoustic emission signal classification using fuzzy C-means clustering, " Proc. 9th International Conference on Neural Information Processing (ICONIP, 02), Singapore, vol. 4, 2002, p.1827.

DOI: 10.1109/iconip.2002.1198989

Google Scholar

[22] A. Marec, J. H. Thomas, and R. El Guerjouma, Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data, Mechanical Systems and Signal Processing, vol. 22, pp.1441-1464, August (2008).

DOI: 10.1016/j.ymssp.2007.11.029

Google Scholar

[23] A. R. Webb, Statistical pattern recognition, John Wiley and Sons, 2nd ed., (2002).

Google Scholar

[24] S. Theodorids and K. Koutroumbas, Pattern recognition, Academic Press, (1999).

Google Scholar

[25] F. d. A. T. de Carvalho, Fuzzy c-means clustering methods for symbolic interval data, Pattern Recog. Lett, 2006, doi: 10. 1016/j. patrec. 2006. 08. 014, in press.

Google Scholar

[26] S. Miyamoto, Information clustering based on fuzzy multisets, Information Processing & Management, vol. 39, pp.195-213, March (2003).

DOI: 10.1016/s0306-4573(02)00047-x

Google Scholar