[1]
V. Tagliaferri, G. Caprino, and A. Diterlizzi, Effect of drilling parameters on the finish and mechanical properties of GFRP composites, Int. J. Mach. Tool Manuf, vol. 30, pp.77-84, (1989).
DOI: 10.1016/0890-6955(90)90043-i
Google Scholar
[2]
W. Chen, Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates, Int. J. Mach. Tools Manuf, vol. 37, p.1097–1108, (1997).
DOI: 10.1016/s0890-6955(96)00095-8
Google Scholar
[3]
I. singh, Drilling of uni-directional glass fiber reinforced plastic: Experimental and finite element study, Materials and design, vol. 29, p.546-553, (2008).
DOI: 10.1016/j.matdes.2007.01.029
Google Scholar
[4]
Y. Z. Pappas., Y. P. Markopoulos, and V. Kostopoulos, Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring, NDT&E International, vol. 31, pp.157-163, (1998).
DOI: 10.1016/s0963-8695(98)00002-4
Google Scholar
[5]
Handbook of nondestructive testing, vol. 5 Acoustic Emission, American Society for Nondestructive Testing.
Google Scholar
[6]
ASTM E610-98A. Definitions of terms relating to acoustic emission.
Google Scholar
[7]
G. Romhany, and G. Szebenyi, Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites, Express Polymer Letters, vol. 3, pp.145-151, (2009).
DOI: 10.3144/expresspolymlett.2009.19
Google Scholar
[8]
S. Benmedakhene, M. Kenane, and M. L. Benzeggagh, Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring, Composite Science and Technology, vol. 59, pp.201-208, (1999).
DOI: 10.1016/s0266-3538(98)00063-3
Google Scholar
[9]
O. Siron, G. Chollon, H. Tsuda, H. Yamauchi, K. Maeda, and K. Kosaka, Microstructural and mechanical properties of filler-added coal-tar pitch-based C/C composites: the damage and fracture process in correlation with AE waveform parameters, Carbon, vol. 39, pp.2065-2075, (2001).
DOI: 10.1016/s0008-6223(99)00270-5
Google Scholar
[10]
C. R. Ramirez-Jimenez, N. Papadakis, N. Reynolds, T. H. Gan, P. Purnell, and M. Pharaoh, Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event, Composite Science and Technology, vol. 64, pp.1819-1827, (2004).
DOI: 10.1016/j.compscitech.2004.01.008
Google Scholar
[11]
G. Qi, A. Barhorst, J. Hashemi, and G. Kamala, Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites, vol. 57, pp.389-403, (1997).
DOI: 10.1016/s0266-3538(96)00157-1
Google Scholar
[12]
T. H. Loutas, V. Kostopoulos, C. Ramirez-Jimenez, and M. Pharaoh, Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms, Composite Science and Technology, vol. 66, pp.1366-1375, (2006).
DOI: 10.1016/j.compscitech.2005.09.011
Google Scholar
[13]
T. P. Philippidis, V. N. Nikolaidis, and A. A. Anastassopoulos, Damage characterization of carbon/carbon laminates using neural network techniques on AE signals, Original Research Article NDT & E International, vol. 31, pp.329-340, October (1998).
DOI: 10.1016/s0963-8695(98)00015-2
Google Scholar
[14]
T. Yan, K. Holford, D. Carter, and J. Brandon, Classification of acoustic emission signatures using a self-organization neural network, Journal of Acoustic Emission, vol. 17, pp.49-59.
Google Scholar
[15]
N. Godin, S. Huguet, R. Gaertner, and L. Salmon, Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers, NDT & E International, vol. 37, pp.253-264, June (2004).
DOI: 10.1016/j.ndteint.2003.09.010
Google Scholar
[16]
R. de Oliveira, and A.T. Marques, Health monitoring of FRP using acoustic emission and artificial neural networks, Computers & Structures, vol. 86, pp.367-373, February (2008).
DOI: 10.1016/j.compstruc.2007.02.015
Google Scholar
[17]
S. Haykin, Neural Networks—A Comprehensive Foundation, 2nd ed., Macmillan College, New York, (1994).
Google Scholar
[18]
S. Suresh, S. N. Omkar, V. Mani, and C. Menaka, Classification of acoustic emission signal sources using Genetic Programming, Journal of Aerospace Sciences and Technologies, vol. 56, p.26–40, (2004).
Google Scholar
[19]
N. Godin, S. Huguet, and R. Gaertner, Integration of the Kohonen's self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites, NDT & E International, vol. 38, pp.299-309, June (2005).
DOI: 10.1016/j.ndteint.2004.09.006
Google Scholar
[20]
S. Z. Selim, and M. A. Ismail, K-means type algorithms: a generalized convergence theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, pp.81-87, (1984).
DOI: 10.1109/tpami.1984.4767478
Google Scholar
[21]
S. N, Omkar, S. Suresh,T. R. Raghavendra, and V. Mani, Acoustic emission signal classification using fuzzy C-means clustering, " Proc. 9th International Conference on Neural Information Processing (ICONIP, 02), Singapore, vol. 4, 2002, p.1827.
DOI: 10.1109/iconip.2002.1198989
Google Scholar
[22]
A. Marec, J. H. Thomas, and R. El Guerjouma, Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data, Mechanical Systems and Signal Processing, vol. 22, pp.1441-1464, August (2008).
DOI: 10.1016/j.ymssp.2007.11.029
Google Scholar
[23]
A. R. Webb, Statistical pattern recognition, John Wiley and Sons, 2nd ed., (2002).
Google Scholar
[24]
S. Theodorids and K. Koutroumbas, Pattern recognition, Academic Press, (1999).
Google Scholar
[25]
F. d. A. T. de Carvalho, Fuzzy c-means clustering methods for symbolic interval data, Pattern Recog. Lett, 2006, doi: 10. 1016/j. patrec. 2006. 08. 014, in press.
Google Scholar
[26]
S. Miyamoto, Information clustering based on fuzzy multisets, Information Processing & Management, vol. 39, pp.195-213, March (2003).
DOI: 10.1016/s0306-4573(02)00047-x
Google Scholar