Study on Kerf Width in Wire-EDM Based on Taguchi Method

Article Preview

Abstract:

— This paper presents an experimental investigation on the influence of cutting parameters of wire cut Electrical Discharge Machining (Wire-EDM) during the machining of tungsten carbide and optimization of machining parameters on kerf width. The investigation was conducted by considering the varying parameter of average machining voltage, spark on time, spark off time, and capacitance with Taguchi method as optimizing technique. L9 orthogonal array has been used to determine the S/N ratio, analysis of variance and ‘F’ test values for indicating most significant parameter affecting the machining performance. The significant factors average machining voltage for kerf width. Spark on time, spark off time and capacitance are obtained as insignificant parameters. Further verification of improvements in the quality characteristics has been made through conformation test to the chosen initial parameter setting. The optimal combination of WEDM parameters satisfies the real requirement of quality machining of tungsten carbide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1808-1816

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ho, K.H., Newman, S.T. , Rahimifard, S., Allen, R.D. State of the art in wire electrical discharge machining (WEDM), International Journal of Machine Tools & Manufacture 44 (2004) 1247-1259, doi: 10. 1016/j. ijmachtools. 2004. 04. 017.

DOI: 10.1016/j.ijmachtools.2004.04.017

Google Scholar

[2] S.H. Lee, X.P. Li, Study of the Effect of Machining Parameters on the Machining Characteristics in Electrical Discharge Machining of Tungsten Carbide, Journal of Materials Processing Technology, 115, (2001).

DOI: 10.1016/s0924-0136(01)00992-x

Google Scholar

[3] S.H. Lee, X.P. Li, Study of the Surface Integrity of the Machined Work Piece in the EDM of Tungsten Carbide, Journal of Materials Processing Technology, 139, (2003), pp.315-321, doi: 10. 1016/S0924-0136(03)00547-8.

DOI: 10.1016/s0924-0136(03)00547-8

Google Scholar

[4] H. C. Chen, J. C. Lin, Y. K. Yang, C. H. Tsai, Optimization of Wire Electrical Discharge Machining for Pure Tungsten using a Neural Network Integrated Simulated Annealing Approach, Expert Systems with Applications, 37 (2010).

DOI: 10.1016/j.eswa.2010.04.020

Google Scholar

[5] N. Tosun, C. Cogun, and G. Tosum, A Study on Kerf and Material Removal Rate in Wire Electrical Discharge Machining based on Taguchi Method, Journal of Materials Processing Technology, 152 (2004).

DOI: 10.1016/j.jmatprotec.2004.04.373

Google Scholar

[6] Di Shichun, Chu Xuyang, Wei Dongbo, Wang Zhenlong, Chi Guanxin, Liu Yuan, Analysis of kerf width in micro-WEDM, ", International Journal of Machine Tools & Manufacturer, 49, (2009), pp.788-792, doi: 10. 1016/j. ijmachtools. 2009. 04. 006.

DOI: 10.1016/j.ijmachtools.2009.04.006

Google Scholar

[7] W.S. Lau, T.M. Yue, T.C. Lee, and W.B. Lee, Un-conventional Machining of Composite Materials, Journal of Materials Processing Technology, 48, (1995), pp.199-205, doi: 10. 1016/0924-0136(94)01650-P.

DOI: 10.1016/0924-0136(94)01650-p

Google Scholar

[8] D. Scott, S. Boyina, and K .P. Rajurkar, Analysis and Optimization of Parameter Combination in Wire Electrical Discharge Machining, International Journal Production Research, 29 (11), (1991), pp.3159-3207, Doi: 10. 1080/00207549108948078.

DOI: 10.1080/00207549108948078

Google Scholar

[9] J.T. Huang, Y.S. Liao, and W.J. Hsue, Determination of Finish-cutting Operation Number and Machining-Parameters Setting in Wire Electrical Discharge Machining, Journal of Materials Processing Technology, 87 (1–3), (1999).

DOI: 10.1016/s0924-0136(98)00334-3

Google Scholar

[10] A. Hascalyk, U. Caydas, Experimental Study of Wire Electrical Discharge Machining of AISI D5 Tool Steel, Journal of Materials Processing Technology, 148, (2004), pp.362-367, doi: 10. 1016/j. jmatprotec. 2004. 02. 048.

DOI: 10.1016/j.jmatprotec.2004.02.048

Google Scholar

[11] Y.S. Liao, J.T. Huang, and H.C. Su, A study on the Machining Parameters Optimization of Wire Electrical Discharge Machining, Journal of Materials Processing Technology, 71 (3), (1997), p.487–493, doi: 10. 1016/S0924-0136(97)00117-9.

DOI: 10.1016/s0924-0136(97)00117-9

Google Scholar

[12] A. Manna, B. Bhattacharyya, Taguchi and Gauss elimination method : A dual response approach for parametric optinization of CNC Wire cut EDM During Machining of PRAISiCMMC, International Journal of Advanced Manufacturing Technology, 28, (2006).

DOI: 10.1007/s00170-004-2331-0

Google Scholar

[13] M. S. Phadke, Quality Engineering Using Robust Design, Prentice Hall. Englewood Cliffs, N. J, (1989).

Google Scholar

[14] R. E. Williams, K. P. Rajurkar, Study of Wire Electrical Discharge Machined Surface Characteristics, Journal of Materials Processing Technology, 28 (1991), pp.127-138. doi: 10. 1016/0924-0136(91)90212-W.

DOI: 10.1016/0924-0136(91)90212-w

Google Scholar

[15] R. Ramakrishnana, L. Karunamoorthy, Modeling and Multi-response Optimization of Inconel 718 on Machining of CNC WEDM Process, Journal of materials processing technology, 207 (2008), p.343–349, doi: 10. 1016/j. jmatprotec. 2008. 06. 040.

DOI: 10.1016/j.jmatprotec.2008.06.040

Google Scholar

[16] M.S. Hewidy, T.A. El-Taweel, M.F. El-Safty, Modelling the Machining Parameters of Wire Electrical Discharge Machining of Inconel 601 using RSM, Journal of Materials Processing Technolog, 169 (2005).

DOI: 10.1016/j.jmatprotec.2005.04.078

Google Scholar

[17] S. Sarkar, S. Mitra, B. Bhattacharyya, Parametric Analysis and Optimization of Wire Electrical Discharge Machining of g-Titanium Aluminide Alloy, Journal of Materials Processing Technology, 159 (2005).

DOI: 10.1016/j.jmatprotec.2004.10.009

Google Scholar