Preparation of TiO2 Nanopowders by Non-Hydrolytic Sol−Gel and Solvothermal Synthesis

Article Preview

Abstract:

TiO2 nanopowders were synthesized by non-hydrolytic sol−gel synthesis and solvothermal method. Effects of the type of alcohol on the properties of TiO2 nanopowders were investigated. XRD and FSEM were used to characterize TiO2 nanopowders. The results showed that TiO2 nanopowders with diameters of about 50nm and micro-spheres with diameters of about 400~500nm were obtained by non-hydrolytic sol−gel synthesis, when ethanol and isopropanol were used as oxygen donor and solvent, respectively. TiO2 prepared with ethanol by non-hydrolytic sol−gel synthesis and calcined at 700°C consisted only 3.8% rutile phase. After solvothermal synthesis, TiO2 nanopowders with diameters of about 50nm were obtained when ethanol and isopropanol were used as the oxygen donor. However, submicrometer spheres with uniform size distribution were obtained with 1-octanol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1934-1939

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobio. C, Vol. 1, Issue 1, 29, pp.1-21, June 2000. DOI: 10. 1016/S1389-5567(00)00002-2.

Google Scholar

[2] D. A. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta, Vol. 45, Issues 15-16, pp.2363-2376, May 2000. DOI: 10. 1016/S0013-4686(00)00337-6.

DOI: 10.1016/s0013-4686(00)00337-6

Google Scholar

[3] M. Grätzel, 'Photoelectrochemical cells, Nature 414, 338-344 (15 November 2001) DOI: 10. 1038/35104607.

Google Scholar

[4] H. J. Koo, Y. J. Kim, Y.H. Lee, W. I. Lee, K. Kim, N. G. Park, Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells, Adv. Mater, Vol. 20, Issue 1, p.195.

DOI: 10.1002/adma.200700840

Google Scholar

[5] I. S. Cho, D.W. Kim, S. Lee, C. H. Kwak, S. T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D. W. Kim, K. S. Hong, Synthesis of Cu2PO4OH Hierarchical Superstructures with Photocatalytic Activity in Visible Light, Adv. Funct. Mater. Volume 18, Issue 15, p.2154.

DOI: 10.1002/adfm.200800167

Google Scholar

[6] S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y.E. Sung Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency, Adv. Mater, Vol. 20, Issue 1, p.54–58, January 2008, DOI: 10. 1002/adma. 200701819.

DOI: 10.1002/adma.200701819

Google Scholar

[7] W. F. Sullivan, S. S. Cole, Thermal Chemistry of Colloidal Titanium Dioxide., J. Am. Ceram. Soc., vol. 42, issue. 3, pp.127-133, March 1959. DOI: 10. 1111/j. 1151-2916. 1959. tb14079. x.

DOI: 10.1111/j.1151-2916.1959.tb14079.x

Google Scholar

[8] Y. Bessekhouad, D. Robert, and J.V. Weber,Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions , J. Photochem. Photobiol., A , Vo. 157, Issue 1, pp.47-53,April 2003, DOI: 10. 1016/S1010-6030(03)00077-7.

DOI: 10.1016/s1010-6030(03)00077-7

Google Scholar

[9] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. formation process and size control, J. Colloid Interface Sci., Vol. 259, Issue. 1, pp.43-52, (2003).

DOI: 10.1016/s0021-9797(03)00036-5

Google Scholar

[10] C. J. Brinker, G. W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing; , Academic Press: San Diego, CAS (1990).

Google Scholar

[11] M. Niederberger, M. H. Bartl and G. D. Stucky, Benzyl Alcohol and Titanium Tetrachloride-A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles, Chem. Mater., Vol. 14 , Issue. 10, p.4364.

DOI: 10.1021/cm021203k

Google Scholar

[12] M. Niederberger, M. H. Bartl and G. D. Stucky, Benzyl Alcohol and Transition Metal Chlorides as a Versatile Reaction System for the Nonaqueous and Low-Temperature Synthesis of Crystalline Nano-Objects with Controlled Dimensionality, J. Am. Chem. Soc., Vol. 124, Issue. 46, p.13642.

DOI: 10.1021/ja027115i

Google Scholar

[13] O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,. Nature, Vol. 353(6346), pp.737-740, October 1991, DOI: 10. 1038/353737a0.

DOI: 10.1038/353737a0

Google Scholar

[14] Pascal Arnal, Robert J. P. Corriu, Dominique Leclercq, P. Hubert Mutin, * and André Vioux, A Solution Chemistry Study of Nonhydrolytic Sol-Gel Routes to Titania, Chem. Mater., Vol. 9(3), pp.694-698, March 1997, DOI: 10. 1021/cm960337t.

DOI: 10.1021/cm960337t

Google Scholar

[15] D. Zhang, T. Yoshida, H. Minoura, Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface., Adv. Mater., Volume 15, Issue 10, pages 814–817, May, 2003, DOI: 10. 1002/adma. 200304561.

DOI: 10.1002/adma.200304561

Google Scholar

[16] R. A. spur, H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., Vol. 29 (5), p.760–762, May 1957 , DOI: 10. 1021/ac60125a006.

DOI: 10.1021/ac60125a006

Google Scholar

[17] Wei-Lin Dai, He-Yong He and Kang-Nian Fan, An integrated low temperature approach to highly photoactive nanocrystalline mesostructured titania , Catal. Commun., Volume 8, Issue 7, Pages 971-976, July 2007, DOI: 10. 1016/j. catcom. 2006. 08. 030.

DOI: 10.1016/j.catcom.2006.08.030

Google Scholar

[18] B. K. Vainshtein, W. M. Fridkin, V. L. Indenbom, Structure of Crystals,. Berlin: Macmillan India Ltd, (1994). pp.485-490.

Google Scholar

[19] G. Dagan, M. Tomkiewich,Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments,,J. Phys. Chem. ,Vol. 97 (49),pp: 12651-12655, December 1993 , DOI: 10. 1021/j100151a001.

DOI: 10.1021/j100151a001

Google Scholar

[20] J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon, T. Hyeon, Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli, J. Phys. Chem. B ., Vol. 109(32), p.15297.

DOI: 10.1021/jp052458z.s001

Google Scholar

[21] Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays., Nano Lett. , Vol. 7(1), pp.69-74. December 2006, DOI: 10. 1021/nl062000o.

DOI: 10.1021/nl062000o

Google Scholar

[22] S. H. Kang, J. Y. Kim, Y. Kim, H. S. Kim, and Y. E. Sung, Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells, J. Phys. Chem. C, Vol. 111( 26), p.9614–9623, June 2007, DOI: 10. 1021/jp0715.

DOI: 10.1021/jp071504n

Google Scholar