[1]
A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobio. C, Vol. 1, Issue 1, 29, pp.1-21, June 2000. DOI: 10. 1016/S1389-5567(00)00002-2.
Google Scholar
[2]
D. A. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta, Vol. 45, Issues 15-16, pp.2363-2376, May 2000. DOI: 10. 1016/S0013-4686(00)00337-6.
DOI: 10.1016/s0013-4686(00)00337-6
Google Scholar
[3]
M. Grätzel, 'Photoelectrochemical cells, Nature 414, 338-344 (15 November 2001) DOI: 10. 1038/35104607.
Google Scholar
[4]
H. J. Koo, Y. J. Kim, Y.H. Lee, W. I. Lee, K. Kim, N. G. Park, Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells, Adv. Mater, Vol. 20, Issue 1, p.195.
DOI: 10.1002/adma.200700840
Google Scholar
[5]
I. S. Cho, D.W. Kim, S. Lee, C. H. Kwak, S. T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D. W. Kim, K. S. Hong, Synthesis of Cu2PO4OH Hierarchical Superstructures with Photocatalytic Activity in Visible Light, Adv. Funct. Mater. Volume 18, Issue 15, p.2154.
DOI: 10.1002/adfm.200800167
Google Scholar
[6]
S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y.E. Sung Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency, Adv. Mater, Vol. 20, Issue 1, p.54–58, January 2008, DOI: 10. 1002/adma. 200701819.
DOI: 10.1002/adma.200701819
Google Scholar
[7]
W. F. Sullivan, S. S. Cole, Thermal Chemistry of Colloidal Titanium Dioxide., J. Am. Ceram. Soc., vol. 42, issue. 3, pp.127-133, March 1959. DOI: 10. 1111/j. 1151-2916. 1959. tb14079. x.
DOI: 10.1111/j.1151-2916.1959.tb14079.x
Google Scholar
[8]
Y. Bessekhouad, D. Robert, and J.V. Weber,Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions , J. Photochem. Photobiol., A , Vo. 157, Issue 1, pp.47-53,April 2003, DOI: 10. 1016/S1010-6030(03)00077-7.
DOI: 10.1016/s1010-6030(03)00077-7
Google Scholar
[9]
T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. formation process and size control, J. Colloid Interface Sci., Vol. 259, Issue. 1, pp.43-52, (2003).
DOI: 10.1016/s0021-9797(03)00036-5
Google Scholar
[10]
C. J. Brinker, G. W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing; , Academic Press: San Diego, CAS (1990).
Google Scholar
[11]
M. Niederberger, M. H. Bartl and G. D. Stucky, Benzyl Alcohol and Titanium Tetrachloride-A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles, Chem. Mater., Vol. 14 , Issue. 10, p.4364.
DOI: 10.1021/cm021203k
Google Scholar
[12]
M. Niederberger, M. H. Bartl and G. D. Stucky, Benzyl Alcohol and Transition Metal Chlorides as a Versatile Reaction System for the Nonaqueous and Low-Temperature Synthesis of Crystalline Nano-Objects with Controlled Dimensionality, J. Am. Chem. Soc., Vol. 124, Issue. 46, p.13642.
DOI: 10.1021/ja027115i
Google Scholar
[13]
O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,. Nature, Vol. 353(6346), pp.737-740, October 1991, DOI: 10. 1038/353737a0.
DOI: 10.1038/353737a0
Google Scholar
[14]
Pascal Arnal, Robert J. P. Corriu, Dominique Leclercq, P. Hubert Mutin, * and André Vioux, A Solution Chemistry Study of Nonhydrolytic Sol-Gel Routes to Titania, Chem. Mater., Vol. 9(3), pp.694-698, March 1997, DOI: 10. 1021/cm960337t.
DOI: 10.1021/cm960337t
Google Scholar
[15]
D. Zhang, T. Yoshida, H. Minoura, Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface., Adv. Mater., Volume 15, Issue 10, pages 814–817, May, 2003, DOI: 10. 1002/adma. 200304561.
DOI: 10.1002/adma.200304561
Google Scholar
[16]
R. A. spur, H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., Vol. 29 (5), p.760–762, May 1957 , DOI: 10. 1021/ac60125a006.
DOI: 10.1021/ac60125a006
Google Scholar
[17]
Wei-Lin Dai, He-Yong He and Kang-Nian Fan, An integrated low temperature approach to highly photoactive nanocrystalline mesostructured titania , Catal. Commun., Volume 8, Issue 7, Pages 971-976, July 2007, DOI: 10. 1016/j. catcom. 2006. 08. 030.
DOI: 10.1016/j.catcom.2006.08.030
Google Scholar
[18]
B. K. Vainshtein, W. M. Fridkin, V. L. Indenbom, Structure of Crystals,. Berlin: Macmillan India Ltd, (1994). pp.485-490.
Google Scholar
[19]
G. Dagan, M. Tomkiewich,Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments,,J. Phys. Chem. ,Vol. 97 (49),pp: 12651-12655, December 1993 , DOI: 10. 1021/j100151a001.
DOI: 10.1021/j100151a001
Google Scholar
[20]
J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon, T. Hyeon, Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli, J. Phys. Chem. B ., Vol. 109(32), p.15297.
DOI: 10.1021/jp052458z.s001
Google Scholar
[21]
Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays., Nano Lett. , Vol. 7(1), pp.69-74. December 2006, DOI: 10. 1021/nl062000o.
DOI: 10.1021/nl062000o
Google Scholar
[22]
S. H. Kang, J. Y. Kim, Y. Kim, H. S. Kim, and Y. E. Sung, Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells, J. Phys. Chem. C, Vol. 111( 26), p.9614–9623, June 2007, DOI: 10. 1021/jp0715.
DOI: 10.1021/jp071504n
Google Scholar